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ABSTRACT

Measurement of Single Top Quark Production at D0 Using a

Matrix Element Method

Jovan Mitrevski

Until now, the top quark has only been observed produced in pairs, by the strong

force. According to the standard model, it can also be produced singly, via an elec-

troweak interaction. Top quarks produced this way provide powerful ways to test the

charged-current electroweak interactions of the top quark, to measure |Vtb|, and to

search for physics beyond the standard model.

This thesis describes the application of the matrix element analysis technique

to the search for single top quark production with the D0 detector using 0.9 fb−1

of Run II data. From a comparison of the matrix element discriminants between

data and the background model, assuming a Standard Model s-channel to t-channel

cross section ratio of σs/σt = 0.44, we measure the single top quark production cross

section:

σ (pp̄ → tb+X, tqb+X) = 4.8+1.6
−1.4 pb.

This result has a p-value of 0.08%, corresponding to a 3.2 standard deviation Gaussian

equivalent significance.
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Keys for Figures

Below are two keys for figures that contain the standard signals and backgrounds,

with the one on the left making finer distinctions between the various backgrounds,

and the one on the right showing the uncertainties in the backgrounds, though with

coarser distinctions on the background.

20 40 60 80 100 120 140 160 180 2000

10

20

30

40

50

60

70

20 40 60 80 100 120 140 160 180 2000

10

20

30

40

50

60

70

QCD

W + light jets

Wcc + jets

Wbb + jets

 lep + jets → tt

 dilepton → tt

signal: tb

signal: tqb

DATA

20 40 600

10

20

20 40 600

10

20

QCD

W + jets

± 1σ  uncertainty
on background

tt

 
signal: tb

signal: tqb

DATA

xiv



ACKNOWLEDGEMENTS

Firstly, I would like to thank my supervisor, Prof. John Parsons, for his guidance

and support during my graduate studies. His help was invaluable. I would also like

to thank the former and current Columbia professors on the D0 Experiment, Mike

Tuts, Hal Evans, and Gustaaf Brooijmans, for their help and guidance.

I would like to thank my committee members for reviewing my thesis: Profs. Bob

Mawhinney, Emlyn Hughes, Reshmi Mukherjee, and Dr. Howard Gordon.

I would also like to thank Jaroslav Ban and Bill Sippach, with whom I worked on

the Level 1 calorimeter trigger upgrade while at Nevis Laboratories. It was my first

real work for D0, and it nicely made use of my electrical engineering background. I

would like to thank Jon Hays, Christian Schwanenberger, and the rest of the electron

ID group, with whom I worked after moving to Fermilab. It was a great introduction

to the D0 software environment, the reconstruction algorithms and the detector, and

in general working on-site. Finally, the top group, especially the single top subgroup,

deserve a very special thanks. Arán Garćıa-Bellido, Ann Heinson, and Reinhard
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Chapter 1

Introduction

The standard model (SM) of particle physics was developed in the 1960s and 70s,

building upon much earlier work. The quark model was proposed, leading to the de-

velopment of QCD for the strong force, and the weak and electromagnetic forces were

unified in the Glashow-Weinberg-Salam (GWS) model. The SM has had remarkable

success, and predictions of the model have been confirmed with greater and greater

precision [1].

Nevertheless, there is a cause for concern, the primary one being that the Higgs

boson, the particle responsible for the electroweak symmetry breaking that is central

to the GWS model, has yet to be discovered, and its most favored mass according to

electro-weak fits has been excluded, as can be seen in Fig. 1.1. Furthermore, there are

theoretical prejudices against the SM concerning the large number of input parameters

it has and fact that the Higgs mass would naturally be much higher than needed for

its role in the SM if it were not for the very fine tuning of certain parameters. These

concerns suggest that studying the predictions of the SM, testing it where it has not

been yet tested, remains very worthwhile.
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Figure 1.1: The preferred mass for the Higgs boson. (Figure from Ref. [1].)

The top quark was discovered [2, 3] in 1995 by the D0 and CDF collaborations at

the Fermilab Tevatron Collider, with its most distinctive feature being its high mass,

the highest of any currently known fundamental particle. Until now, the top quark

has only been observed via pair production. The work leading to this thesis found

first evidence supporting the standard model’s prediction that the top quark can also

be produced singly.

The outline of thesis is as follows. The next two chapters give a theoretical

introduction, first to the SM in general, and then to single top production. Then

Chapter 4 discusses the experimental apparatus: the Fermilab Tevatron Collider and

the D0 detector. Chapter 5 discusses how the data from the detector is processed

to identify and measure physics objects. The three subsequent chapters discuss the

analysis. Chapter 6 explains how events are selected and the background models
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built. Chapter 7 explains the multivariate method used to discriminate the signal

from background: the matrix element method. Chapter 8 explains how a cross section

is measured and gives the results. Finally, Chapter 9 gives a summary and future

outlook.
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Chapter 2

The Standard Model

2.1 The Constituents

The standard model (SM) is a quantum field theory of the fundamental particles

and interactions between them, other than gravity.1. In the SM there are two cat-

egories of spin-1
2

particles: leptons and quarks. Leptons interact by the weak and,

if charged, the electromagnetic force, but not the strong force. Table 2.1 lists the

types of leptons, along with their electric charges and masses [9]. Until recently the

standard model assumed that neutrinos were massless, but recent experiments imply

that the neutrinos do in fact have nonzero masses [10, 11]. The leptons can be divided

into three generations, with corresponding particles across generations having similar

properties except for the mass. There also exist the charge conjugates to the leptons:

the antineutrinos, the positron, the antimuon, and the antitau. They have the oppo-

site quantum numbers, including charge, of the particles. Whether the neutrino is its

own antiparticle is not yet known, and is the subject of investigation [12].

1This discussion is based on the descriptions in Ref. [4, 5, 6, 7, 8].
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Name Symbol Charge (e) Mass (MeV)

electron neutrino νe 0 < 0.000002

electron e −1 0.511

muon neutrino µν 0 < 0.19

muon µ −1 105.7

tau neutrino ντ 0 < 18.2

tau τ −1 1777

Table 2.1: The three generations of leptons.

Quarks interact via the strong force, in addition to the weak and electromagnetic

forces. They come in three varieties, called “colors”: red, blue, and green. These

are the charges for quantum chromodynamics (QCD), the theory of the strong force.

Table 2.2 lists the types of quarks, along with their electric charges and masses [9]

(except for top quark mass, which is from [13]). The quarks too can be divided into

three generations, with corresponding particles across the generations sharing similar

properties except for the mass. The mass is quite different, though: the top quark

mass is roughly 104 times greater than the up quark mass. The generation of masses

for the fermions is discussed more in Sec. 2.3.1. There also exist the charge conjugates

to the quarks: the antiquark, which have the opposite quantum numbers, including

change and color (antired, antiblue and antigreen).

The standard model also contains spin-1 particles that mediate the forces, and

one spin-0 particle, the Higgs boson, responsible for giving masses. The Higgs boson

has not yet been observed. The properties of these particles will be discussed below,

where the form of the SM is motivated.
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Name Symbol Charge (e) Mass (MeV)

up u 2/3 1.5 to 3.0

down d −1/3 3 to 7

charm c 2/3 1250

strange s −1/3 95

top t 2/3 170 900

bottom b −1/3 4200

Table 2.2: The three generations of quarks.

2.2 Symmetries and Gauge Theories, QED, and

QCD

Symmetries have played a fundamental role in the development of the standard model.

Noether’s theorem showed that for each continuous global symmetry there is a conser-

vation law [14]. Invariance to spatial translation implies conservation of momentum,

invariance to translation in time implies energy conservation, and invariance to ro-

tation implies angular momentum conservation, for example. More central to this

motivation, though, are internal symmetries, and the conservation laws they imply.

For example, take the Lagrangian for a free spin-1
2

field ψ:

L = ψ̄(iγµ∂µ −m)ψ. (2.1)

This equation is invariant under the transformation, ψ → e−iαψ, where α is a con-

stant. Noether’s theorem then gives jµ = qψ̄γµψ as the conserved current, which is

the electrical current density.

What happens, however, if we allow different space-time points to undergo differ-

ent phase transformations: ψ → e−iα(x)ψ. Is Eq. 2.1 still invariant to that transfor-
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mation? It is not, because ∂µe
−iα(x)ψ 6= e−iα(x)∂µψ. But what if we require it to be,

as a fundamental principle, because the choice at locations not causally connected

should not matter? Equation 2.1 can be fixed up to comply with this requirement by

changing ∂µ to the covariant derivative:

Dµ ≡ ∂µ + iqAµ (2.2)

and requiring the full transformation to be:

ψ → e−iα(x)ψ (2.3)

Aµ → Aµ +
1

q
∂µα(x). (2.4)

The Lagrangian then becomes

L = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν (2.5)

where the term involving Fµν = ∂µAν−∂νAµ has been added to make Aµ be a dynamic

variable of the Lagrangian. Equation 2.5 is the Lagrangian for QED, where Aµ is the

photon. Electromagnetic interactions came into being just by requiring invariance

under local phase transformations. In the SM, all interactions come about from such

local transformations. A mass term for the photon, 1
2
m2AµA

µ, is not invariant to the

transformation given in Eq. 2.4, so the photon is required to be massless. Also, the

only interactions involving a photon are between the photon and the fermions. This

is different from what we will find for other bosons.

Maxwell’s equations are invariant to the transformation given in Eq. 2.4 for any

function α(x), and Weyl, attempting to find a geometrical foundation for electromag-

netism, motivated by Einstein’s geometrical foundation for gravity, tried to associate



2.2. Symmetries and Gauge Theories, QED, and QCD 8

Aµ with a scale, or gauge transformation [15]. Though the effort was originally unsuc-

cessful, with advances in quantum mechanics, including work by Vladimir Fock and

Fritz London, Aµ became associated with the phase transformation described above,

though the terminology, a gauge transformation, remained [16, 17, 18].

The gauge symmetry discussed above is called a U(1) symmetry, because the

transformation, ψ → e−iα(x)ψ, can be considered of the form ψ → Uψ, where U is a

one-dimensional unitary matrix. The symmetry is also called an Abelian symmetry

because the members of the group, the one-dimensional unitary matrices, commute.

It is possible to have gauge transformations using non-Abelian groups [19]. For

example, the set of 3× 3 unitary matrices with a determinant equal to one forms the

SU(3) group. Any matrix in that set can be written as U [α] = exp
(

−iλa

2
αa
)

, with

summation over a from 1 to 8 implied, where λa are the Gell-Mann matrices. Let

ψ =













ψred

ψblue

ψgreen













(2.6)

be a triplet for any particular quark flavor. The free Lagrangian is

L = ψ̄(iγµ∂µ −m)ψ, (2.7)

though now ψ is a triplet. We immediately see that this equation is invariant to the

global SU(3) gauge transformation, ψ → U [α]ψ. We proceed as before and require

the Lagrangian to be invariant under a local gauge transformation: ψ → U [α(x)]ψ.
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The solution is similar: ∂µ needs to be replaced by

Dµ ≡ ∂µ − ig
λa

2
Aa

µ. (2.8)

If we define

Aµ =
λa

2
Aa

µ (2.9)

Gµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] (2.10)

where Gµν is the field strength tensor, analogous to Fµν in the Abelian case, we get

the standard QCD Lagrangian:

L =

nf
∑

q

ψ̄q(iγ
µDµ −mq)ψq −

1

2
tr(GµνG

µν), (2.11)

where the summation is over the quark flavors q. The eight Aa
µ spin-1 particles

are called gluons, which mediate the strong force. As with the photon, gluons are

massless, but unlike the photon, gluons interact with each other. The interactions

between the gluons arises because of the non-Abelian nature of the symmetry group,

specifically because of the commutator in the definition of Gµν . The gluons carry a

color charge, while the photons do not.

A special property of QCD, though not absolutely proven, is confinement. As the

distances between quarks become greater, the energy between them increases, until

there is enough energy to create a new quark-antiquark pair, for example. There-

fore, free particles with a net color charge are never observed; only color singlets are

observed. For this reason free quarks have never been observed, but only hadrons:

mesons, which are made up of a quark-antiquark pair, and baryons, which are made
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up of three quarks in a color singlet state. The proton is a baryon consisting mainly

of two up quarks and a down quark, and a neutron is a baryon consisting mainly of

one up quark and two down quarks. In addition to those quarks, there is a “sea” of

other quarks and gluons that appear due to quantum fluctuations.

Another property of QCD is called asymptotic freedom. The greater the energy

of the collision, the smaller the coupling constant is. Thus, in high-energy collisions,

the quarks behave as almost free particles within the hadron. At the Tevatron, the

collisions look as if they are between two quarks (or gluons), not between a proton

and an antiproton.

The distribution of partons within a hadron with a given momentum fraction

of the total momentum is parametrized by a parton distribution function (PDF).

The PDF is needed whenever cross sections involving high-energy interactions with

hadrons are calculated. Specifically, the PDF distribution, f(x,Q)dx, is the number

of quarks or gluons of a particular type (u, d, etc.) in a particular type of hadron

(proton, pion, etc) carrying a momentum fraction between x and (x + dx) of the

hadron’s momentum in the infinite momentum frame, when probed by an interaction

with Q momentum transfer. Figure 2.1 gives the PDF for protons for Q = 100 GeV

from the CTEQ6M NLO parametrization [20].

2.3 Electroweak Interactions

The weak force was first observed in β decay. Pauli postulated the existence of the

neutrino to salvage the conservation of energy and momentum in such decays, and

Fermi suggested a four-fermion interaction model to describe the interaction [21, 22].

Then there was a surprising discovery: the weak force does not conserve parity [23,
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Figure 2.1: The CTEQ6M parton distribution function at Q = 100 GeV.
The value f(x)dx is the number of quarks or gluons of the particular type
in a proton carrying a momentum fraction between x and (x + dx) of the
proton’s momentum. (Figure from Ref. [20].)
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24]. The theory was fixed up by making this interaction V−A, meaning that it

involves the subtraction of a part that transforms like an axial vector from a part

that transforms like a vector. More unexpected results followed when charge times

parity (CP) violation was discovered in the K-meson system [25]. There was no easy

way to include this feature in the theory at the time.

A problem with the four-fermion theory is that it is not renormalizable and

violates unitarity. A modification was to include an intermediate vector boson to

transmit the force, much like the photon in QED; however, since the weak force is weak

and short-range, this boson is required to be massive. Making a renormalizable theory

that has massive vector bosons massive, however, is difficult. In 1957, Schwinger

suggested that the weak force and electromagnetism should be unified [26]. The

solution is to make the boson acquire a mass by spontaneous symmetry breaking

using the Higgs mechanism [27, 28, 29, 30, 31, 32, 33, 34, 35]. The current theory,

called the Glashow-Weinberg-Salam (GWS) model, unifies the weak force and the

electromagnetic force in a local gauge theory that has an SU(2)L ⊗U(1)Y symmetry,

broken by the Higgs mechanism, into a theory containing only U(1)EM [36, 37, 38]. In

1971 ’t Hooft proved that all gauge theories, even those with spontaneous symmetry

breaking, are renormalizable, provided that anomalies cancel [39, 40]. Then in 1973

neutral current weak interactions, predicted by the GWS theory, were first observed

with the Gargamelle detector [41]. The theory has been confirmed in all measurements

so far, except that the Higgs boson has not been discovered.

One can construct two projection operators using the γ5 matrix:

PR =
1 + γ5

2
PL =

1 − γ5

2
(2.12)

which select the right-handed and left-handed spinors. Using the notation, ψL ≡ PLψ
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and ψR ≡ PRψ, in the GWS model the leptons are arranged in the following SU(2)

singlets and doublets:

Lℓ
1 ≡





νeL

eL



 Lℓ
2 ≡





νµL

µL



 Lℓ
3 ≡





ντL

τL



 (2.13)

Rℓ
1 ≡ eR Rℓ

2 ≡ µR Rℓ
3 ≡ τR.

Note that there are no right handed neutrinos in the model. Right handed neutrinos

do not interact in the theory, and whether they exist or not is not known. In the SM

as described here, the neutrinos will remain massless.

The quarks, replicated three times, once for each color index a = (r, b, g), are

arranged in the following SU(2) singlets and doublets:

Lq,a
1 ≡





ua
L

da
L



 Lq,a
2 ≡





caL

sa
L



 Lq,a
3 ≡





taL

baL



 (2.14)

Ru,a
1 ≡ ua

R Rd,a
1 ≡ da

R Ru,a
2 ≡ caR Rd,a

2 ≡ sa
R Ru,a

3 ≡ taR Rd,a
3 ≡ baR.

The color index will often be suppressed in the equations to avoid clutter.

Each member of a given doublet (and trivially each member of a given singlet)

has the same value for the charge of the fermion (Q) minus the weak isospin value

T3, so we define the weak hypercharge as Y = 2(Q− T3), using conventional scaling.

Using this definition, Table 2.3 shows the hypercharge for each singlet and doublet.

Let W i
µ be the three gauge fields associated with the SU(2)L symmetry and Bµ be

the gauge field associated with the U(1)Y symmetry. Define the covariant derivative
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Singlet or Doublet Weak Isospin (T ) Hypercharge (Y )

Lℓ 1/2 −1

Rℓ 0 −2

Lq 1/2 1/3

Ru 0 4/3

Rd 0 −2/3

Table 2.3: The weak isospin and hypercharge of each singlet or doublet.

to be:

Dµ ≡ ∂µ − igT · Wµ − ig′
Y

2
Bµ (2.15)

where T = τ
2

in cases when T = 1/2 and T = 0 for the T = 0 cases. With F i
µν and

Gµν being the associated field strength tensors, the Lagrangian contains the term:

LA = −1

4
F i

µνF
i µν − 1

4
GµνG

µν . (2.16)

The terms in the Lagrangian for the interactions of each generation of quarks and

leptons is:

Lint = L̄ℓ
jiγ

µDµL
ℓ
j + R̄ℓ

jiγ
µDµR

ℓ
j + L̄q,a

j iγµDµL
q,a
j + R̄u,a

j iγµDµR
u,a
j + R̄d,a

j iγµDµR
d,a
j

(2.17)

with j being the generation index (1, 2, 3) and a the color index (r, b, g).

At this point, however, everything is massless. To get massive particles the GWS

theory uses the Higgs mechanism. Let

Φ =





φ+

φ0



 (2.18)
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be an SU(2) doublet of complex scalar particles, with the charges as specified by the

superscripts (and hence Y = 1). The terms in the Lagrangian for this doublet are

given by

LHiggs = (DµΦ)†(DµΦ) − V (Φ) (2.19)

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2 (2.20)

and the Yukawa couplings:

LYukawa = f ℓ
jkL̄

ℓ
jΦR

ℓ
k + fu

jkL̄
q,a
j Φ̃Ru,a

k + fd
jkL̄

q,a
j ΦRd,a

k + h.c. (2.21)

with Φ̃ ≡ iτ2Φ
∗ and j and k being generation indices. If µ > 0, the lowest potential

energy is no longer at 〈Φ〉0 = ( 0
0 ). Instead, the lowest potential energy comes at

〈Φ†Φ〉0 = v2/2 with v =
√

µ2/λ. Because of the SU(2) symmetry, we can choose

〈Φ〉0 =





0

v/
√

2



 (2.22)

with no loss in generality. 〈Φ〉0 is the vacuum expectation value (VEV), and after it

is chosen, it breaks the SU(2)L ⊗ U(1)Y symmetry. We can reparametrize Φ as

Φ = e−iζ·τ/v





0

(v + η)/
√

2



 (2.23)

and follow it with a gauge transformation, Φ′ = U(ζ)Φ, U(ζ) = exp (iζ · τ/v) to the

U-gauge to get:

Φ′ =





0

(v + η)/
√

2



 (2.24)
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L′ = U(ζ)L R′ = R (2.25)

τ · W′
µ

2
= U(ζ)

(

τ · Wµ

2

)

U−1(ζ) − i

g
[∂muU(ζ)]U−1(ζ) (2.26)

B′
µ = Bµ. (2.27)

The η field is associated with the Higgs particle, which is a neutral scalar particle.

In this new gauge, the Higgs self interaction Lagrangian becomes:

LHiggs self =
1

2
(∂µη)(∂

µη) − µ2η2 − λvη3 − λ

4
η4, (2.28)

showing the η particle acquiring a mass of
√

2µ. Using θW ≡ arctan(g′/g), the

Weinberg weak mixing angle, four gauge fields are defined as:

W±
µ ≡ W

′(1)
µ ∓W

′(2)
µ√

2
(2.29)

Zµ ≡ cos θWW
′(3)
µ − sin θWB

′
µ (2.30)

Aµ ≡ sin θWW
′(3)
µ + cos θWB

′
µ. (2.31)

The charged W±
µ and neutral Zµ fields are the gauge bosons that mediate the weak

force, and Aµ is the photon. From Eq. 2.19, the mass terms for the vector bosons can

be found:

Lvector mass =
g2v2

4
W+

µ W
−µ +

1

2

(g2 + g′2)v2

4
ZµZ

µ (2.32)

resulting in MW = gv/2, MZ = MW/ cos θW, and a massless photon. The Higgs

mechanism was able to provide the masses without spoiling renormalizability as

manually-inserted masses would. The current measured value for the W mass is

80.398 ± 0.025 GeV [1] and for the Z mass is 91.1876 ± 0.0021 GeV [9].

Simplifying Eq. 2.17 with the new definitions, the charged current interactions,
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i.e., interactions between fermions and W bosons, become

LCC =
g

2
√

2

[

ν̄jγ
µ(1 − γ5)ejW

+
µ + ējγ

µ(1 − γ5)νjW
−
µ

+ ūjγ
µ(1 − γ5)djW

+
µ + d̄jγ

µ(1 − γ5)ujW
−
µ

]

(2.33)

with the notation, ej = (e, µ, τ), νj = (νe, νµ, ντ ), uj = (u, c, t), and dj = (d, s, b).

The neutral current interactions, i.e., interactions between fermions and the neutral

bosons, Z and A, become

LNC =

ferm.
∑

k

{

eQkψ̄kγ
µψkAµ +

g

2 cos θW

[

gk
Lψ̄kγ

µ(1 − γ5)ψk + gk
Rψ̄kγ

µ(1 + γ5)ψk

]

Zµ

}

(2.34)

where

e ≡ g sin θW gk
R|L ≡ T3(ψR|L,k) −Q(ψR|L,k) sin2 θW. (2.35)

The standard electromagnetic interaction is included in Eq. 2.34. Because the GWS

theory is a non-Abelian gauge theory, like QCD, the vector bosons also interact

between themselves. More information can be found in the references on which this

derivation is based (especially [4, 5, 6, 8]).

2.3.1 Fermion Mass

The Higgs mechanism can also give mass to the fermions. Reworking Eq. 2.21 in the

U-gauge results in:

LYukawa =
η√
2

[

f ℓ
jkēL,jeR,k + fu

jkūL,juR,k + fd
jkd̄L,jdR,k

]

+

v√
2

[

f ℓ
jkēL,jeR,k + fu

jkūL,juR,k + fd
jkd̄L,jdR,k

]

+ h.c. (2.36)
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The first line shows the interactions between the Higgs field and the fermions, and the

second line shows the masses of the fermions. However, there is one complication: the

M b =
[

− v√
2
f b

jk

]

matrices are not required to be diagonal. One can define diagonal

matrices, M b
d = Sb†M bT b, where S and T are unitary matrices, and then have

eL,i = Sℓ
ije

m
L,j uL,i = Su

iju
m
L,j dL,i = Sd

ijd
m
L,j (2.37)

eR,i = T ℓ
ije

m
R,j uR,i = T u

iju
m
R,j dL,i = T d

ijd
m
R,j (2.38)

where the fields with the m superscript are the mass eigenstates. The neutral current

interaction, Eq. 2.34, is invariant to whether the ψ or ψm fields are used, but the

charged current interaction, Eq. 2.33, is not. However, any mixing can be localized

to only the neutrinos in the lepton case (though in the standard GWS theory, where

they are massless, there is no need for such mixing) and the down-type quarks in the

quark case. Using this convention, the Yukawa couplings can be written as

LYukawa =
η√
2

[

f ℓ
j ē

m
L,je

m
R,j + fu

j ū
m
L,ju

m
R,j + fd

j d̄
m
L,jd

m
R,j

]

+

v√
2

[

f ℓ
j ē

m
L,je

m
R,j + fu

j ū
m
L,ju

m
R,j + fd

j d̄
m
L,jd

m
R,j

]

+ h.c. (2.39)

The mass of the top quark, with a March 2007 D0 and CDF combined value

of mt = 170.9 ± 1.1(stat) ± 1.5(syst) GeV [13], roughly that of a gold atom, is 104

times greater than the mass of an up quark. From Eq. 2.39, the top mass is given

by mt = (v/
√

2)|fu
3 |. The numerical value of v = (

√
2GF)−

1

2 ≈ 246 GeV results

in |fu
3 | ≈ 1. The near unity Yukawa coupling to the Higgs boson, leads one to

wonder if the top quark plays any special role in electroweak symmetry breaking

(EWSB). The idea that a tt̄ condensate plays the role of a Higgs boson, breaking

the symmetry has been proposed [42, 43, 44], for example. Topcolor models add
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a new strong interactions coupling to the third generation in order to form the tt̄

condensate [45, 46, 47, 48, 49]. Topflavor places the third generation in a separate

SU(2) group from the light quarks [50, 51, 52]. For a more complete review see [53].

2.3.2 The CKM Matrix

The charged current interaction term, (1/2)ūjγ
µ(1 − γ5)djW

+, in Eq. 2.33, can be

written in terms of mass eigenstates as follows:

ūjγ
µ(1 − γ5)djW

+ = 2ūL,jγ
µdL,jW

+

= 2ūm
L,jγ

µ[Su†Sd]jkd
m
L,kW

+

= ūm
j γ

µ(1 − γ5)[S
u†Sd]jkd

m
k W

+. (2.40)

The matrix,

VCKM ≡ Su†Sd =













Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb













(2.41)

is known as the Cabibbo-Kobayashi-Mashawa matrix [54, 55]. Using the convention

mentioned previously, where all mixing in the quark sector is localized in down-type

quarks, one can view the CKM matrix as relating the mass eigenstates to the weak

eigenstates:












d

c

b













w

= VCKM













d

c

b













m

. (2.42)

The CKM matrix is unitary, with a dimension of ngen ×ngen, or 3× 3 given three

generations. The CKM matrix does not have to be real, and interference caused by
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imaginary phases can lead to the CP violation observed in, for example, K-mesons.

In fact, CP violation was the original motivation of Koboyashi and Mashawa for

expanding the original 2× 2 Cabbibo matrix even before there was any evidence of a

third generation.

Assuming three generations and unitarity, the magnitudes for the CKM matrix

elements are [9]:

|Vij| =













0.97383+0.00024
−0.00023 0.2272 ± 0.0010 (3.96 ± 0.09) × 10−3

0.2271 ± 0.0010 0.97296 ± 0.00024
(

42.21+0.10
−0.80

)

× 10−3

(

8.14+0.32
−0.64

)

× 10−3
(

41.61+0.12
−0.78

)

× 10−3 0.999100+0.000034
−0.000004













. (2.43)

The entries along the diagonal are the largest, meaning that the strongest interactions

are between mass eigenstates of the same generation.

The CKM matrix element Vtb is of particular interest to single top searches,

because the single top cross section is proportional to |Vtb|2. Thus, measuring the

single top cross section provides a direct way to measure |Vtb|, without assuming

unitarity or three generations [56]. In contrast, the value of |Vtb| = 0.999100+0.000034
−0.000004,

given in Eq. 2.43, is derived assuming unitarity and three generations. The related

measurement of B(t→Wb)/B(t→Wq) measures

R =
|Vtb|
∑

i |Vti|
, (2.44)

which D0 and CDF measured to be 1.03+0.19
−0.17 and 1.12+0.21

−0.19(stat)+0.17
−0.13(syst) respec-

tively [57, 58]. If three generations are assumed,
∑

i |Vti| = 1, so |Vtb| can be ex-

tracted from the measurement. Both analyses set the same limit of |Vtb| > 0.78 at

95% confidence level.
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An indirect measurement of |Vtb| has also been done based on precision elec-

troweak data results from LEP, SLC, the Tevatron, and neutrino experiments [59].

The result mostly comes from loop corrections to the Z → bb̄ interaction, examples

of which are shown in Fig. 2.2. A result is |Vtb| = 0.77+0.18
−0.24.

t

W

t̄

Z

b

b̄

W

t

W

Z

b

b̄

Figure 2.2: Z → bb̄ vertex corections containing a top quark.
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Chapter 3

Single Top Production

Single top production refers to the production of one top quark by the charged-current

electroweak interaction, making it a powerful probe of charged-current interactions

involving the top quark. In tt̄ events, on the other hand, the top quark’s charged-

current interactions can only be studied in the decays. Single top productions has

therefore been extensively studied [60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71]. A

useful review is provided in Ref. [56].

Single top production can be classified into three types:

• s-channel: Single top production via an s-channel process involves a the ex-

change of a time-like W boson with Q2
W > (mt + mb)

2, where QW is the four-

vector squared of the W boson. A representative leading order (LO) Feynman

diagram is given in Fig. 3.1(a).

• t-channel: Single top production via a t-channel process involves the exchange

of a space-like W boson with Q2
W < 0. A representative LO Feynman diagram

is given in Fig. 3.1(b).
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• tW associated production: A single top quark can be created in association

with an an on-shell W boson. Representative LO Feynman diagrams are given

in Fig. 3.2.

W

d̄

u

b̄

t

(a) W

b

u

t

d

(b)

Figure 3.1: LO Feynman diagrams for single top production via the (a) s-
channel and (b) t-channel process.

b

g

W

t

b

g

W

t

Figure 3.2: LO Feynman diagrams for tW associated production.

The cross sections have been calculated at the tree level [66] and at NLO [72, 73, 74,

75, 76, 77, 78, 79, 80, 81, 82], with many of the later ones being differential, providing

theoretically-predicted event kinematics. The cross sections given in Table. 3.1 [83, 84]

are for the three processes at Run II of the Fermilab Tevatron Collider and at LHC

for mt = 171.4 ± 2.1 GeV at NLO plus NNLO and NNNLO threshold soft-gluon

corrections. At the Tevatron the top and antitop rates are the same, so the values
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Single Top Cross Section (pb)

Process Run II Tevatron t+ t̄ LHC t LHC t̄

s-channel 1.08 ± 0.08 7.80+0.70
−0.60 4.35 ± 0.26

t-channel 2.30 ± 0.14 150 ± 6 92 ± 4

tW associated 0.28 ± 0.06 43.5 ± 4.8 43.5 ± 4.8

Table 3.1: The cross sections for single top and antitop production. At
the Tevatron, the antitop cross section is the same as the top cross section.
The values are for mt = 171.4 ± 2.1 GeV at NLO plus NNLO and NNNLO
threshold soft-gluon corrections, from [83, 84].

in the second column are twice the single top rates given in the paper. Associated

production is small at the Tevatron because of its massive final state. Therefore, this

analysis only looks for s-channel and t-channel production. At the LHC, however,

tW production will be comparatively large because it involves an initial state gluon,

and as can be seen from Fig 2.1, the gluon PDF grows much faster than the quark

PDFs at low x. Because of the higher center of mass energy at the LHC, lower x

will be needed for single top production. On the other hand, s-channel production

will be relatively small at the LHC because the diagrams involve an initial antiquark,

and because the LHC is a pp collider, antiquarks will only come from the sea. The

Tevatron, being a pp̄ collider, has valance antiquarks.

3.1 Single Top Event Signature

According to the SM, the top quark is expected to decay almost exclusively into a

b-quark and a W boson. Other decays are suppressed by the small values of |Vts| and

|Vtd| [9]. In the case where the W boson decays hadronically, the signal is swamped

by QCD multijet background. Therefore, this analysis searches for events in which
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Figure 3.3: LO Feynman diagram for single top production via the s-channel,
followed by a leptonic decay of the top quark.

the W boson decays into either an electron or a muon plus a neutrino1.

This section uses the differential NLO calculations from Refs. [79, 80, 81] to

show the theoretical distributions for single top production at Run II of the Fermilab

Tevatron Collider.

3.1.1 s-channel

Figure 3.3 shows the representative LO s-channel diagram with the decay explicitly

shown. The main components of the final state are the b̄ that was created along

with the top quark, the b-quark from the top quark decay, the charged lepton that

comes from the W boson the top quark decays into, and the neutrino from the same

W boson. The neutrino is evident only as 6ET in the detector—it is not directly

observed. Examples of NLO corrections to single top production via the s-channel

1Cases where the W boson decays into a tau and a neutrino are included as a signal if the
tau subsequently decays into a muon or electron, though the efficiency of the multivariate
techniques tends to be poorer in such cases. There are a number of reasons for the lower
efficiency. First, the resulting electron or muon pT is lower so triggering is less efficient.
Second, the extra neutrinos make the tau’s energy less well known than, for example, an
electron’s energy is. Third, at least for the matrix element analysis, the discriminant is
built assuming the electron or muon comes directly from the W boson, not from a tau, so
the discriminating power is smaller for tau events.
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Figure 3.4: Representative diagrams of real emission correction for single top
production via the s-channel process. (Diagrams from Ref. [79].)

that include real emission are shown in Fig. 3.4. These diagrams can produce a “third

jet” in the event.

Figure 3.5 gives the Born level and NLO pT and η distributions for the jets in

s-channel single top production. The term, O(αs), refers to the NLO corrections

applied to the Born level to get the NLO distributions. These plots are only for t

(and not t̄) production, which is why there is some asymmetry in the η plots, though

not very large. The jets tend to be central, with the third jet least so. The pT

distribution of the b-jet that comes from the top quark decay has a higher peak than

that of the b̄ jet, but the pT distribution of the b̄ jet has a longer tail at the high end.

The third jet pT tends to be the lowest. Given the pTjet > 15 GeV and |η| < 3.0 cuts

used in this study, roughly 33% of the s-channel events have a third jet. The legend

in Figure 3.5 refers to whether the third jet came from the Wud̄ vertex part of the

graph (INIT), the Wtb̄ vertex part of the graph (FINAL), or the top quark decay

(SDEC).

Figure 3.6 gives the NLO pT and η distributions for the charged lepton, and
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Figure 3.5: The NLO pT and η distributions for the jets in s-channel single
top production: (a) the b-jet from the top decay, (b) the b̄-jet that gets created
along with the top quark, and (c) the “third jet.” (Plots from Ref. [80].)
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also the pT of the neutrino, which is observed as the 6ET, for s-channel single top

production. The charged lepton is very central. The neutrino has slightly higher

pT on average compared to the charged lepton, which can be explained by the V−A

structure of the charged-current interaction, as is explained Sec. 3.2.
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Figure 3.6: (a) The NLO pT and η distributions for the charged lepton in
s-channel single top production. (b) The neutrino pT, observed as the event
6ET. (Plots from Ref. [80].)

3.1.2 t-channel

Figure 3.7 shows the representative LO t-channel diagram with the decay explicitly
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shown. The main components of the final state are the b-quark from the top quark

decay, the charged lepton that comes from the W boson the top quark decays into,

the neutrino from the same W boson, and the d “spectator” quark. Sample NLO

corrections to single top production via the t-channel that include real emission are

shown in Fig. 3.8, including the well known W -gluon fusion diagrams, which are

graphs (k)-(n) in the figure. Thus, a “third jet” produced by the NLO diagrams can

come from the b̄-quark from W -gluon fusion diagrams, in addition to gluon and light

quark jets.

W

t

W

b

u

b

ℓ+

ν

d

Figure 3.7: LO Feynman diagram for single top production via the t-channel,
followed by a leptonic decay of the top quark.

Figure 3.9 gives the NLO pT and η distributions for the jets in t-channel single top

production. The b-jet from the top decay tends to have the highest pT and be central.

The spectator jet has a lower pT distribution, but its most distinguishing feature is

its forward and asymmetric η distribution, which can be used to help discriminate

signal from background. These plots are only for t (and not t̄) production; adding

t̄ production to the η plots would make them symmetric. In an experimental setup,

the asymmetric plot can be retrieved by plotting “Q × η,” where Q is the charge

of the lepton and η is the pseudorapidity of the leading jet without a b-tag. Given

the pTjet > 15 GeV and |η| < 3.0 cuts used in this study, roughly 40% of t-channel
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Figure 3.8: Representative diagrams of real emission correction for single top
production via the t-channel process. (Diagrams from Ref. [79].)
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events have a third jet. The legend in Figure 3.9 refers to whether the third jet came

from the heavy quark line (HEAVY), the light quark line (LIGHT), or the top quark

decay (TDEC). Note that the HEAVY correction is greater than the LIGHT or TDEC

correction, and 80% of the HEAVY corrections include a b̄ quark from W -gluon fusion

processes. The pT distribution of the third jet is the lowest, and the η distribution,

though central, is fairly wide.

Figure 3.10 gives the NLO pT and η distributions for the charged lepton, and

also the pT of the neutrino, which is observed as the 6ET, for t-channel single top

production. As for s-channel production, the charged lepton is very central, and the

neutrino has a slightly higher pT on average compared to the charged lepton.

3.2 Polarization Effects

It was concluded before the top quark was discovered that its large mass would result

in a decay time too short for hadrons to form [85]. Thus, unlike other quarks, the

top quark does not form mesons and baryons, according to the SM. This fact has the

advantage that it exposes raw quark properties, undiluted by hadronization.

The V−A weak force produces highly polarized top quarks [66, 86, 87, 88, 89,

80, 81]. The polarization of the top quark becomes evident in the angular correla-

tions between the observed daughter particles. It had been suggested to use these

correlations to improve the discovery potential [71, 56], and variables including those

correlations have been directly used to set limits on single top production [90], and

recently, to find evidence for single top production [91, 92]. This analysis uses those

variables indirectly since the matrix elements include a full treatment of spins.

With more statistics, the polarizations and the resulting angular correlations can
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Figure 3.9: The NLO pT and η distributions for the jets in t-channel single
top production: (a) the b-jet from the top decay, (b) the “spectator jet,” and
(c) the “third jet.” (Plots from Ref. [81].)



3.2. Polarization Effects 33

 [GeV]TElectron p
0 50 100 150 200

 [f
b/

G
eV

]
σ

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8 NLO

Born

) sumsαO(

(a)

ηElectron 
-4 -2 0 2 4

 [f
b]

σ

0

5

10

15

20

25

30 NLO

Born

) sumsαO(

 [GeV]TE
0 50 100 150 200

 [f
b/

G
eV

]
σ

0

0.2

0.4

0.6

0.8

1

1.2

1.4
NLO

Born

) sumsαO(

(b)

Figure 3.10: (a) The NLO pT and η distributions for the charged lepton in
s-channel single top production. (b) The neutrino pT, observed as the event
6ET. (Plots from Ref. [81].)
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be used to study the V−A form of the weak interaction. Beyond the SM scenarios

that include right-handed couplings or scalar particles, such as charged technipions

or Higgs particles, can produce different signatures [93].

To understand why the top quark is polarized in single top production, it is

helpful to look at the decays of a polarized top quark in its rest frame. Being a heavy

spin-1 particle, the W boson has three helicity states: left-handed, longitudinal, and

right-handed. However, as shown in Ref. [94], in the top quark rest frame, W bosons

with right handed polarization are heavily suppressed by the small mass of the b-quark

relative to both the mass of the W boson and the mass of the top quark, so they

can be ignored. In that approximation, the b-quark from a t-quark decay is always

left-handed and the b̄-quark from a t̄-quark decay is always right-handed because of

the V−A nature of the weak interaction.

Figure 3.11(a) shows the decay of a top quark into a longitudinally polarized

W+ boson and a b-quark. To conserve angular momentum, the b-quark, being left-

handed, needs to go in the direction opposite to the spin of the top quark, so the

W boson goes in the direction of the top quark spin. Note that the positron from

the W boson’s decay has spin aligned with the top quark and moves in the same

direction as the top quark’s spin. Figure 3.11(b) shows the decay of a top quark into

a left-handed W+ boson and a b-quark. To conserve angular momentum, the b-quark,

being left-handed, needs to go in the direction of the spin of the top quark, so the W

boson goes in the direction opposite of the top quark spin. Note that the positron, to

conserve angular momentum in the W boson decay, again has its spin aligned with

the top quark and moves in the same direction as the top quark’s spin. Thus the

top quark’s spin is most strongly correlated with that of the positron, not its direct

decay products. Figure 3.11(b) also explains why the 6ET values on average tend to
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Figure 3.11: Correlation between the spin of the top quark and the direction
of the charged lepton in the top quark rest frame for (a) a t-quark decaying
into a W boson with longitudinal polarization and (b) a t-quark decaying
into a W boson with left-handed polarization. (Figure from Ref. [93].)

be higher than the charged lepton pT values: the neutrino in that diagram needs to

have enough pT to balance both the positron and the b quark.

There is an analogous correlation between t̄ quarks and electrons from their de-

cays. The spin of the charged lepton, therefore, is always aligned with that of the t

or t̄-quark, and the direction of the positron (electron) tends to be along (against)

the spin of the t- (t̄)-quark. As pointed out in Ref. [89], single top production can be

viewed as a top quark decay going backwards in time. Relating the down quark to

the electron because of its analogous role in the SU(2) electroweak doublet, one infers

that the polarization with the top quark is most correlated with the polarization of

the down quark. If one takes the spin basis to be the direction of the down quark,

the correlation is 100% [86].
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Figure 3.12: Feynman diagrams for anomalous single top production via s-
channel processes with a (a) W ′ vector boson or a (b) top-pion as predicted
by topcolor.

3.3 Single Top and the Search for Physics Beyond

the Standard Model

Beyond the standard model (BSM) interactions can affect the cross sections, and in-

terestingly, the three processes, s-channel, t-channel, and tW are differently sensitive

to new effects [93]. The s-channel is most sensitive to new charged bosons, which

can contribute to the production cross section in diagrams analogous to the SM one

but with the W boson replaced by new particles. Representative figures are shown

in Fig 3.12. Topflavor theories predict new gauge bosons [50, 51, 52], including a

heavy W ′ that can contribute to s-channel single top production. Topcolor theories

predict new scalar charged bosons, such as a top pion that couples to top and bottom

quarks [45, 46, 47, 48, 49]. A charged Higgs particle from MSSM theories could play

a similar role. Because there are additional diagrams, the s-channel cross section is

typically enhanced, especially so if the boson can be produced on-shell. Figure 3.13

shows examples of how those theories would affect the s-channel cross section. In

that figure, the top-flavor model is barely distinguishable from the SM because of the

large mass of the gauge boson, but at the LHC, the large mass would not present a
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Figure 3.13: Examples of BSM effects to the single top cross section at
the Tevatron Collider (left) and at LHC (right). The SM single top cross
sections are represented by the black solid circle, with the oval line showing
the 3σ theoretical uncertainty. The purple X shows how a top-flavor model
(MZ′ = 1 TeV, sin2 φ = 0.05) could affect the cross section, and the blue
cross is how a charged top-pion (mπ = 250 GeV left, 450 GeV right, and tR-
cR mixing of ∼ 20%) could effect the cross section. Note that both are extra
particles and thus affect the s-channel cross section. The green open circle
shows how a FCNC Ztc vertex could affect the cross sections, and the red
star shows the effect of fourth quark generation. The figure is from Ref. [93].

problem. On the other hand, because the additional bosons are heavy, their contri-

bution would be suppressed in the t-channel by 1/M2
W ′, where MW ′ is the mass of the

boson.

The t-channel cross section is very sensitive to extra interactions. For exam-

ple, flavor changing neutral current (FCNC) interactions, shown in Fig. 3.14 would

increase the t-channel cross section because then additional diagrams of the type

qc→ qt would contribute, and the c-quark parton density in the proton is larger than

the b-quark parton density, compensating for the presumably weaker interaction. The
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Figure 3.14: FCNC Feynman diagrams for single top production via the (a)
s-channel and (b) t-channel process.

s-channel interaction would also experience an enhancement, but it would probably

be negligible due to the FCNC interaction’s weakness, and additionally there would

be one fewer b-quark to tag in the final state, likely hurting the event selection effi-

ciency. The t-channel cross section would also experience a similar enhancement from

the PDFs if |Vts| is larger than predicted by the three-generational unitarity in the

SM. The s-channel cross section would not have any enhancement, and could suffer

because of lower b-tagging efficiencies. Figure 3.13 also shows examples how those

theories would affect the t-channel cross section.

In summary, the s-channel and the t-channel cross sections have different sen-

sitivities, and hence it would be useful to separately measure their cross sections,

Associated tW production, because of the real W boson in the final state, is gener-

ally not sensitive to extra bosons, so it can further help untangle the results at the

LHC.

BSM effects can also be observed in the polarizations of the top quark [93]. If the

interactions have a V+A component, or if the interactions are mediated by a spin-0

boson, the angular correlations would change. For example, in the helicity basis, top

quarks produced by top-pions would show close to 100% right-handed polarization,
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while the SM predicts 70% left-handed top quarks in the s-channel [81].
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Chapter 4

Experimental Apparatus

4.1 Accelerator Chain

The Fermilab Tevatron Collider is the highest energy collider currently in operation,

with a center of mass energy of 1.96TeV [95, 96, 97]. It was the world’s first large

scale superconducting synchrotron when it was commissioned in 1983, in proton-only

fixed target mode. Currently the Tevatron Collider is used as a proton-antiproton

(pp̄) collider, with beams of protons and antiprotons traveling in opposite directions

around a circular ring of radius 1 km. The current beam structure is “36 on 36,”

meaning that there are 36 bunches of protons colliding with 36 bunches of antiprotons.

The bunches are arranged into three “superbunches” of 12 bunches each. Within a

superbunch, the bunches are spaced 396 ns apart. Collisions can occur at two points

on the ring: where the CDF detector is located and where the D0 detector is located.

The beam spot at the D0 interaction point is 30µm across, and the length of the

interaction area along the beam is distributed according to a Gaussian distribution

with σ ≈ 25 cm. Current initial instantaneous luminosities are over 2× 1032 cm−2s−1,



4.1. Accelerator Chain 41

Figure 4.1: Integrated luminosity delivered by the Tevatron Collider.

and Fig. 4.1 shows the weekly and total integrated luminosities delivered from March

2001: the Run II running period. At the current luminosities, multiple collisions often

occur per bunch crossing. In the time period used for this analysis, August 2002 to

December 2005, most often just one primary vertex was reconstructed in an event,

but the average number of primary vertices reconstructed was 1.91.

There are many steps involved to get protons and antiprotons circling in the

Tevatron Collider with an energy of 0.98TeV. Figure 4.2 shows the chain of acceler-

ators involved in the process. The beam starts at the negative hydrogen ion (H−)

source, a magnetron surface-plasma source [95, 99]. The magnetron source consists

of an oval cathode surrounded by an anode inside a magnetic field. Hydrogen gas

(H2) is sent into the chamber, and as a result of the electric and magnetic field, a

1This was measured in Z → e+e− events.



4.1. Accelerator Chain 42

Figure 4.2: Fermilab’s accelerator chain [98].
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plasma is formed. When H+ ions strike the cathode, they reflect or desorb hydrogen

atoms that have been absorbed on the surface. Some of these are H− ions. In order

to increase the rate at which H− ions are created, the cathode is coated with Ce-

sium, which reduces the work function for removing an extra electron. The H− ions

are accelerated by the potential difference between the anode and cathode and leave

through an aperture in the cathode with 18 keV of energy. The process is pulsed at

15Hz.

The magnetron source is located within a dome kept at -750 kV by a Cockcroft-

Walton generator [95, 100]. The Cockcroft-Walton generator uses a 75 keV AC input

voltage (from a transformer) to charge capacitors in parallel. With the proper place-

ment of diodes, the voltage from the capacitors is applied in series, thus multiplying

its value. In this way, the H− ions are accelerated to 750 keV, at which point they

enter the Linac [100, 101, 102] for further acceleration.

The Linac is a two stage linear accelerator, whose purpose is to accelerate the

750 keV H− ions up to 400MeV. The first stage, which was a part of the original

200MeV Linac built in 1971, is an Alvarez drift-tube accelerator. It accelerates the

ions to 116MeV. The second stage, a more modern, side-coupled accelerator that

replaced the high energy portion of the original accelerator in 1993, accelerates the

ions up to 400MeV. The reason for the increased Linac energy was to decrease beam

losses in the Booster [95, 103], the next step in the acceleration chain.

The purpose of the Booster, a fast cycling proton synchrotron with a 151m radius,

is to accept the 400MeV H− ions and output 8GeV protons. Injection is done via

a multi-turn charge-exchange injection [95, 104], which is the reason why H− ions

are used in the beginning of the accelerator chain. After debunching the H− ions

from the Linac to minimize their momentum spread, the H− beam is merged with
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the proton beam already in the Booster over multiple turns, and the electrons are

stripped by a carbon foil.

After the Booster in the accelerator chain is the Main Injector [105]. It is also a

synchrotron, but much larger, with a circumference of 3320m. It was commissioned in

1998 as a replacement for the Main Ring. With regard to the running of the Tevatron

Collider, the Main Injector has two duties: accelerating protons up to 120GeV to

send to the Antiproton Source [95, 96, 106], and accelerating protons or antiprotons

to 150GeV to inject into the Tevatron.

To make antiprotons, the Main Injector takes 8GeV protons from the Booster,

accelerates them to 120GeV, and sends them to a nickel target. The target is followed

by a lithium lens to focus the secondary particles, and then a dipole magnet to select

8GeV antiprotons from the beam. These are then sent to the Debuncher, a triangular

8GeV synchrotron, to reduce the momentum spread and to cool them. From there,

the antiprotons are “stacked” in the Accumulator, another 8GeV synchrotron.

The limiting factor to the luminosity of the Tevatron has been the number of an-

tiprotons available. Therefore, a recent addition has been the Recycler [107], which

is an 8GeV storage ring with permanent magnets that shares the same tunnel as the

Main Injector. When the Accumulator becomes full, stacking efficiency decreases, so

the antiprotons are transferred to the Recycler, and stacking efficiency is improved.

Additionally, electron cooling was recently accomplished to further improve the an-

tiproton beam and potentially significantly improve the luminosity [108].

The Main Injector can take protons from the Booster accelerate them to 150GeV,

and inject them into the Tevatron. It can also take antiprotons from the Accumulator

or the Recycler and do the same. The Tevatron then accelerates beams to 0.98TeV,

initializes collisions, and allows the beams to collide for the many hours of the “store.”
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Figure 4.3: Schematic of the D0 detector [110].

4.2 The D0 Detector

At one of the collision points of the Tevatron Collider sits the D0 detector [109, 110],

a general purpose detector built to study pp̄ collisions, with an emphasis on high-mass

states and large pT phenomena. The detector was commissioned in 1992 as part of

Run I of the Tevatron, and it was heavily modified for the start of Run II in 2001.

What is described here is the current, Run II version of the D0 detector.

Figure 4.3 shows a diagram of the D0 detector. Protons enter from the north side,

antiprotons from the south, colliding in the center inside a beryllium beam pipe, which

has a wall thickness of 0.508mm and an outer diameter of 38.1mm. Closest to the col-
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lision point is the central tracking system, consisting of the silicon microstrip tracker

(SMT) and the central fiber tracker (CFT), all inside a superconducting solenoidal

magnet. Outside of the magnet are the preshower detectors, to compensate for the

material in the tracking system, followed by the calorimeters. Finally, outside of

the calorimeters is the muon system, with its toroidal magnets. These systems are

explained in more detail below.

A right-handed coordinate system is used for the detector and data analysis. As

shown in Fig. 4.3, the positive z direction is chosen to be the direction that protons

travel, and the y direction is chosen to be up. The r coordinate is defined in the

cylindrical coordinate system sense: r =
√

x2 + y2. The polar and azimuthal angles

are written as θ and φ, with the standard definitions. The origin can be chosen to

be in the middle of the detector or at the interaction vertex. When the origin is set

in the middle of the detector, then the values are called detector values; when the

origin is set at the interaction vertex, then the values are called physics values. If

not specified, the values are physics values when discussing physics, detector values

when discussing the detectors. For θ and derived values the distinction can be large

because, due to the length of the bunches, the interaction vertices are distributed in

the z coordinate with σz ≈ 25 cm. Because φdet ≈ φphys, the distinction is often not

made for φ.

The pseudorapidity, η, is defined as:

η = − ln

[

tan

(

θ

2

)]

, (4.1)

which approximates the true rapidity, y (not to be confused with the coordinate y):

y =
1

2
ln

(

E + pz

E − pz

)

(4.2)
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for relativistic particles. Differences of rapidity are invariant to boosts parallel to

the beam line. Distinction is often made between ηdet and ηphys, as discussed above.

∆R, unless otherwise specified, is defined as
√

(∆η)2 + (∆φ)2. (In jet algorithms ∆R

is sometimes defined with rapidity instead of pseudorapidity.) “Transverse” values,

such as pT, the transverse momentum, unless otherwise stated, are transverse relative

to the beam line. Transverse values are often used because the proton is a composite

particle, so the longitudinal energy of the collision is not known.

4.2.1 Triggering and Data Acquisition

The collision rate at the D0 detector is 1.7MHz, but only around 50Hz of events can

be written to tape. Most of the collisions, however, have only soft interactions, which

we also call minimum bias interactions. We are interested, on the other hand, in the

less frequent hard interactions, and the purpose of the trigger is to select events that

have interesting, hard interactions.

The D0 detector uses three layers of triggering. Figure 4.4 shows an overview

of the trigger and data acquisition (DAQ) system, and Fig. 4.5 shows the individual

components of the first two trigger levels. The Level 1 (L1) trigger system must

reduce the incoming rate of 1.7MHz down to 2 kHz, with at most 3.3µs of processing

time per event. It is a hardware-based system because of the high input data rate it

must handle and the tight timing required. The L1 accept rate is low compared to

similar detectors, such as CDF. The reason is that reading out the trackers, as would

happen on an L1 accept, introduces dead time, so the accept rate needs to be kept

low to minimize the dead time.

The main trigger systems used for this analysis are the L1CAL, the calorimeter

trigger, and the L1MUO, the muon trigger. They are described in more detail in the
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Figure 4.4: Overview of the trigger and DAQ systems [110].
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Figure 4.5: Overview of the L1 and L2 trigger systems [110].
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calorimeter and muon system sections that follow. L1MUO also takes tracks as input

from L1CTT, the track trigger.

The Level 2 (L2) trigger system reduces the rate by a factor of two. It is based on

both special hardware and embedded microcontrollers. Since the L2 trigger system

has more time to spend than the L1 trigger on the events, it can implement more

sophisticated algorithms and make more correlations between the detectors; never-

theless, its time is still short, and it still makes do with the more limited trigger

versions of some data inputs, such as the ∆η × ∆φ ≈ 0.2 × 0.2 trigger towers from

the calorimeter or axial-only fiber hits from the CFT.

For this analysis, the only L2 triggers used are again the calorimeter trigger,

L2CAL, and the muon trigger, L2MUO. They are described in their respective de-

tector system sections.

The Level 3 (L3) trigger system reduces the accept rate to 50Hz, which is written

to tape. Currently extra capacity has been added and the accept rate can increase

to 100Hz during high instantaneous luminosity times at the beginning of a store.

The L3 trigger is software-based, running on a computer farm, with access to the full

information of the events and does partial reconstruction of the events with algorithms

similar to those used offline.

4.2.2 Central Tracking

The central tracking system, consisting of the silicon microstrip tracker (SMT) [111]

and the central fiber tracker (CFT) [112], all inside a 2T superconducting solenoidal

magnet [113], was newly designed for Run II. Figure 4.6 shows the location of the

components.
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Figure 4.6: Schematic of the inner tracker [110].
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The purpose of the central tracking system is to find tracks of charged particles.

These tracks can then be used to measure the pT of the particle that made the track,

to find the interaction vertex, and for b-tagging. Furthermore, the tracks and vertices

can be combined with information from other detectors for particle identification.

Primary interaction vertices can be found with a resolution of about 35µm along the

z direction. For tracks with η = 0 and pT > 10 GeV, the impact parameter resolution

in the r-φ plane is better than 15µm.

Silicon Microstrip Tracker

The SMT uses silicon microstrip sensors to provide the precise tracking close to the in-

teraction point necessary for vertex finding and b-tagging. The main idea behind how

silicon sensors work is that charged particles going through silicon ionize the material,

creating electron-hole pairs. By appropriately biasing the sensor, which in effect is

reverse-biasing a pn-junction, a large depletion zone is created, so called because it

is an area depleted of free charge carriers such as electrons and holes. Furthermore,

the depletion zone has an electric field across it, resulting in any electron-hole pairs

created in the depletion zone to be quickly being swept out in opposite directions.

Thus, if an ionizing particle goes through the depletion zone, the electron-hole pairs

are quickly collected, providing a signal that can be read out from the electrodes.

The probes collecting the charges can be made to be narrow strips, microstrips, in

order to be able to measure spatially where the ionizing particle passed.

The SMT uses various types of sensors, some single sided (SS), with microstrips

on one side only, and some double sided (DS), with microstrips on both sides. On DS

detectors, the strips on each side can be at an angle relative to each other in order to be

able to localize the path of the ionizing particle in more than one direction. However,
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Module Type Layer Pitch (µm) Angle (◦) Length (cm)

F-disk DS – p: 50, n: 62.5 30 7.93

H-disk SS – 40, 80 readout 15a 7.63 inner

– 6.33 outer

Central Barrels (4) DSDMb 1,3 p: 50, n: 153.5 90 12.0

DS 2,4 p: 50, n: 62.5 2 6.0 × 2c

Outer Barrels (2) SS 1,3 50 – 6.0 × 2

DS 2,4 p: 50, n: 62.5 2 6.0 × 2

Table 4.1: SMT sensor specifications.

atwo SS detectors mounted back to back
bDouble Sided, Double Metal
ctwo 6 cm sensors bonded together

that does lead to more complicated fabrication and lower yield, and possibly higher

sensitivity to radiation damage, which is why the new “Layer 0” upgrade to the

SMT [114], which was installed after we finished taking data for this analysis, uses

only SS sensors. Specifications of the sensors used are given in Table 4.1, including

the pitch between the strips and the angle between the strips.

The fact that the interaction points are distributed over a relatively large distance

along the beam line (σz ≈ 25 cm) complicates the design of the SMT, which depends

on tracks going across the sensors relatively perpendicularly. A design was chosen

with sensors on barrel modules interspersed with sensors on disks in the central area

and disks in the forward regions. Figure 4.7 shows a three-dimensional perspective of

the SMT, and Fig. 4.6 is useful for seeing the spatial relations of the SMT modules to

each other and to the CFT. There are six barrel detectors with centers at |z| = 6.2,

19.0, and 31.8 cm; twelve F-disks at |z| = 12.5, 25.3, 38.2, 43.1, 48.1, and 53.1 cm;

and four H-disks at |z| = 100.4 and 121.0 cm. The barrel detectors extend in the

radial direction from 2.7 cm to 7.6 cm, the F-disks from 2.6 cm to 10.0 cm, and the
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Figure 4.7: The silicon microstrip tracker [110].

H-disks from 9.5 cm to 26 cm. The barrel detectors measure primarily r-φ. The strips

in the modules run in the axial direction, and if DS, at ±2◦ or 90◦ relative to the

axial direction. The disks primarily measure r-z, and also r-φ. The detector covers

|η| < 3. For the barrel modules, the axial hit resolution is around 10µm, and the z

hit resolution is approximately 35µm for the 90◦ stereo, 450µm for the 2◦ stereo.

In total there are 793k channels in the SMT, which are read out using 128-channel

SVXIIe chips. These chips include a preamplifier, a 32-cell analog pipeline, and an

analog to digital converter (ADC) with a sparse readout.

The SMT is not used for Level 1 triggering because it would take too long to read

out the channels. It is used starting with Level 2, in the silicon track trigger (STT),

which can measure the impact parameter of tracks and thus determine which ones

are likely to have come from b-quarks.

Central Fiber Tracker

Surrounding the SMT is the CFT. It is made up of scintillating fibers on eight con-

centric cylinders from 20 to 52 cm from the beam pipe. Each cylinder carries two
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doublet layers of fiber, one layer pointing in the radial direction, and the other layer

pointing at a stereo angle of ±3◦, with the signs alternating between the cylinders.

The doublets on the innermost cylinder have 2560 fibers each, for a total of 5120

fibers, and the doublets on the outermost cylinder have 6500 fibers each, for a to-

tal of 13 000 fibers. The inner two cylinders are 1.67m long, and the other six are

2.52m long. The coverage of the outer layer is |η| < 1.7. The fiber is only 835µm in

diameter, resulting in an inherent doublet resolution of about 100µm.

The fibers are made of polystyrene (PS), doped 1% by weight with the organic

fluorescent dye paraterphenyl (pT). Ionizing particles generally excite the PS, which

transfers the excitations to the pT, which in a few nanoseconds has a fluorescent decay,

giving off light with a wavelength of 340 nm. Light at that wavelength, however, has a

mean free path of only a few hundred microns, so additionally, 3-hydroxyflavone (3HF)

is added at 1500 ppm as a wavelength shifter. The final radiation has a wavelength

of 530 nm. The fibers have two claddings to increase the attenuation length, and

are connected on one end to clear fiber optical waveguides between 7.8m and 11.9m

long, which take the signal to visible light photon counters (VLPCs). The other

end is mirrored. The VLPCs are impurity-band silicon avalanche photodetectors,

operating at 9K, with a quantum efficiency greater than or equal to 75%, a gain of

22 000–65 000. They are capable of detecting single photons.

One important feature of the CFT is its fast speed. Signals from the axial doublets

are used for Level 1 triggering in the central track trigger (L1CTT). The L1CTT also

sends the tracks it finds to the L1MUO system for matching to muon candidate

and the L2STT for finding tracks using the SMT. The CFT is used in all stages of

triggering.
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Solenoidal Magnet

The SMT and the CFT are both inside a 2T magnetic field provided by the supercon-

ducting solenoidal magnet. The magnet’s size, 1.42m in diameter, 2.73m in length,

was set by the size of the tracking cavity determined by the calorimeter cryostats,

which are from Run I. The magnet has a thickness of 0.9X0 at η = 0, where X0

is known as a radiation length, or the length needed for an electron’s energy to be

reduced to 1/e of its original energy by radiation losses.

The solenoid is wound in two layers of superconducting conductor made of Cu:NbTi

strands stabilized with aluminum. There are two types of conductors in order to make

the current density greater at the ends of the solenoid, which results in better field

uniformity. The coils are kept at a superconducting temperature by liquid helium.

The nominal current that flows through the solenoid is 4749A. After the shutdown

that took place in 2005, however, the solenoid could no longer hold such a high current

due to resistive heating at a solder joint, so the current had to be reduced to 4550A.

Therefore, after the shutdown, the nominal magnetic field was reduced to 1.92T.

The direction of the current can be reversed so that the magnet can operate in both

polarities.

4.2.3 Preshower Detectors

To compensate for the material in front of the calorimeters, especially in the solenoidal

magnet, preshower detectors were installed outside of the central tracking system.

Their purpose is to aid electron and photon identification, by both providing extra

tracking to match tracks with calorimeter showers, as well as providing an energy

measurement. There are two preshower detectors: the central preshower (CPS),
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Figure 4.8: Cross-section of the scintillator strips used in the preshower de-
tectors, with layout geometry shown for the CPS and FPS [110].

located between the solenoid and the central calorimeter and covering |η| < 1.3, and

the forward preshower (FPS), located in front of the end calorimeter and covering

1.5 < |η| < 2.4. Their position is shown on the diagram of the inner detector, Fig. 4.6.

The active layers of the preshower detectors are made from scintillating strips of

triangular cross section, as shown in Fig. 4.8. The strips are made of PS plastic doped

with 1% pT and 150 ppm diphenyl stilbene, and they are wrapped in aluminized mylar

for optical isolation. In the middle of each strip there is a wave length shifting (WLS)

fiber to collect and transmit the signal. These fibers are polished and silvered at one

end, and read out using the same hardware as the CFT on the other end.

The CPS consists of three concentric cylindrical layers of scintillator placed be-

hind a 1X0 lead radiator. One layer is in the axial direction, and two stereo layers are

arranged at ±24◦. Together, the solenoid and the lead radiator account for 2X0. At

that point electrons should have started showering but heavier particles should not
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have, thereby providing for some discrimination. Additionally, photons should have

also started showering and thus become visible in the preshower.

The FPS consists of four layers of scintillator: two layers at angle of 22.5◦ relative

to each other, then a 2X0 radiator made of lead and stainless steel, followed by two

more layers of scintillator. The group of scintillators in front of the radiator are

called the minimum ionizing particle (MIP) layers. Charged particles coming from

the interaction point should appear as MIP particles in this region, and due to the

more limited forward tracking, this is used to locate the particle in the FPS. The

radiator causes electrons and photons to start showering, but heavier particles should

not. The two layers behind the radiator are called the shower layers, and their purpose

is to detect electron and photon showers, in order to discriminate them from hadrons.

The axial scintillator layer is read out for the Level 1 trigger similarly to the

way axial doublets of the CFT are read out. However, the Level 2 trigger also uses

the stereo layers, while for the case of the CFT, the stereo doublets are not used for

triggering before Level 3.

4.2.4 Calorimeters

The goal of a calorimeter is to measure the energy of a particle by total absorption.

Electrons and photons are made to produce an electromagnetic shower, where due

to interactions with matter, electrons bremsstrahlung, i.e., emit photons, and pho-

tons, in turn, pair-produce electrons. The shower continues until a critical energy is

reached, at which point electrons start losing energy more by collision loss and not by

bremsstrahlung, and photons no longer have enough energy to pair-produce electrons.

As already mentioned, the radiation length, X0, is the length for an electron to have

its energy reduced by a factor of 1/e by radiation losses. Additionally, it is found
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that the mean path photons travel before pair-producing electrons is approximately

9
7
X0 [115]. Thus, it is natural to express thicknesses in terms of radiation lengths.

Hadronic particles and jets also shower when interacting with matter, though

the shower progression is more complex [116]. The interaction length (λA), or the

mean path between interactions that are not elastic or diffractive, provides a scale

for the shower development. Hadron showers develop over a longer distance than

electromagnetic showers, especially for high atomic number (Z) materials.

The only SM particles that do not shower in the calorimeters are muons and

neutrinos. There is a special detector for muons, covered in Sec. 4.2.5, but neutrinos

are only implicitly observed by conservation of momentum.

One of the strengths of the D0 detector in Run I was the quality of its calorime-

ters. Therefore, though the readout was changed in order to handle the shorter time

between bunch crossings, the calorimeters themselves are largely unchanged. The

calorimeters are sampling calorimeters, mainly of uranium plates and liquid argon

(LAr) active medium. Figure 4.9 shows a schematic of a calorimeter cell. In the

uranium of the absorber plates, the radiation length and the interaction length is

short, so the particles can be stopped in a relatively short distance. However, they

are “dead material” in the sense that no signal is read from them. Instead, there are

the gaps between the absorber plates filled with LAr where the shower is sampled,

hence the name. The LAr is ionized by charged particles passing through it, and the

charges are collected by the signal boards. In this way the total energy of the incident

particle or jet can be measured.

Figure 4.10 shows the three calorimeters: the central calorimeter (CC) and the

two end calorimeters (ECS, ECN, or collectively EC). Closest to the interaction point

are the electromagnetic (EM) sections of the calorimeters, whose purpose is to accu-
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Figure 4.9: A schematic of a calorimeter cell [110].

Figure 4.10: The calorimeters and their modules [110].



4.2. The D0 Detector 60

rate measure the energy of electrons and photons. They are built with 3mm (CC)

or 4mm (EC) thick uranium plates from nearly pure depleted uranium2. The EM

modules are divided into four depth layers, known as “floors,” of approximately 1.4,

2.0, 6.8, and 9.8X0 thick in the CC, and 1.6, 2.6, 7.9, and 9.3X0 thick in the EC [110].

The number given for the first floor includes the material in the cryostat wall. The

floors are called EM1, EM2, EM3, and EM4. Next in depth are the fine hadronic (FH)

sections, which use 6mm thick uranium-niobium (2%) alloy plates. The FH modules

are divided into three floors of depth 1.3, 1.0, and 0.76λA in the CC, and four floors,

each of either 1.1λA (inner hadronic) or 0.9λA (middle hadronic) in the EC. Those

floors are called FH1, FH2, FH3, and FH4. Last in depth are the coarse hadronic

(CH) sections, which uses 46.5mm thick plates of copper in the CC or stainless steel

in the EC. There is only one CH floor in the CC, approximately 3.2λA thick. In

the inner hadronic and middle hadronic modules of the EC there is also one floor of

thickness 4.1λA or 4.4λA respectively. The are three floors with a maximum thickness

of 6.0λA in the outer hadronic module.

In addition to measuring energy, the calorimeters need to measure the loca-

tion of the shower. For that, the floors are segmented into cells of ∆η = 0.1 and

∆φ = 2π/64 ≈ 0.1. In EM3, for better precision in determining the position of

electromagnetic showers, the segmentation is ∆η = 0.05 and ∆φ = 2π/128 ≈ 0.05.

In Run I the peak of electromagnetic showers occurred in EM3, which is why that

floor was chosen to have finer resolution. In Run II, the shower peak tends to happen

earlier because of the extra material in front of the calorimeter, the addition of the

solenoidal magnet in particular. The cells are arranged into pseudo-projective tow-

ers, as shown in Fig. 4.11. They are called pseudo-projective and not just projective

because the cell boundaries do not point towards the center of the detector. The η

2Depleted uranium has the uranium-235 isotope depleted.
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Figure 4.11: Schematic view of the calorimeter showing pseudo-projective
towers and the calorimeter layout [110].
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coverage of the calorimeter system extends out to about |η| < 4.

As can be seen in Fig. 4.11, in the area between the CC and the EC cryostats,

there are certain trajectories that pass through much material before hitting the

actual calorimeter structures. In order to add sampling to those trajectories, the

massless gaps (MG) have been added within the cryostats, and the intercryostat

detector (ICD) has been added between the cryostats. Those detectors can be seen

in Fig. 4.11, though they have not been labeled in order to not over-complicate the

figure. The ICD is also visible and labeled in Fig. 4.6. The massless gaps are standard

calorimeter cells in front of the first layer of uranium in both the CC and the EC. The

ICD which covers 1.1 < |η| < 1.4 in Run II, is a series of 0.5 in thick Bicron BCF-400

scintillating tiles. The tiles are divided into subtiles of ∆η×∆φ ≈ 0.1×0.1 to match

the calorimeter. The subtiles are read out by WLS fibers, which via clear fibers are

sent to photo-multiplier tubes. The signal is shaped and made to be compatible to

the standard calorimeter signals.

The relative momentum resolution for the calorimeter system is measured in data

and found to be σ(pT)/ ≈ 13% for 50 GeV jets in the CC and σ(pT)/pT ≈ 12% for

50 GeV jets in the ECs. The energy resolution for electrons in the CC is σ(E)/E ≈
16%/

√
E ⊕ 4%, where ⊕ means to add in quadrature.

The calorimeter is a key component at all levels of the trigger system. For Level 1

and 2, a faster readout is used, only distinguishing EM and FH layers in depth3, and

with lateral segmentation of ∆η × ∆φ ≈ 0.2 × 0.2. These 0.2 × 0.2 towers are called

trigger towers. In Run IIa, the time period used for this analysis, the Level 1 triggers

were only defined in terms of numbers of trigger towers with ET above thresholds,

measured either only in the EM layer or in the full trigger tower (EM + FH). At

3The CH is not used.
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Level 2 there is some clustering of trigger towers done to define both EM objects and

jets [117]. Electrons are made up of two towers, the seed tower, provided by L1, and

its largest neighbor tower. Jet objects are 3×3 (before trigger version v9.31) or 5×5

trigger tower clusters, centered around a seed provided by L1.

4.2.5 Muon System

Outside of the calorimeter lies the muon system [118]. Muons generally pass through

the calorimeter as minimum ionizing particles (losing around 1.6GeV of energy), so

it is the muon system’s duty to identify them, measure their locations, and measure

their transverse momenta. Because in Run II D0 has the solenoidal magnet for the

central tracking systems, muon tracks also have their pT measured there, usually with

better accuracy. Nevertheless, the muon system is essential for muon identification.

The muon system is also needed for the momentum measurement of muons with

|η| > 1.6, for which the central tracking system has lower efficiency.

The muon system consists of a toroidal magnet, three layers of wire chambers,

and scintillators. The purpose of the magnet is to measure the momentum of muon

locally. The purpose of the wire chambers it to accurately measure the position

of the muons (and for triggering). The purpose of the scintillators is to have a fast

readout for accurate timing, rejecting cosmics, matching wire chamber hits with bunch

crossings, and trigger. Figure 4.12 shows the exploded view of the arrangement of

the wire chambers and scintillators. Note that the bottom of the detector is not fully

instrumented. Figure 4.3 provides another view that shows the layout with regard

to the toroidal magnet. The general arrangement is that there are three layers of

sensors: the A layer first, then the magnet, after which are the B and C layers. There

are two layers after the magnet so that the outgoing direction of the muons can be
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Figure 4.12: Exploded view of the muon system wire chambers (top) and
scintillators (bottom) [110].
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Figure 4.13: The magnetic field in the central (left) and end (right) toroidal
magnets [118].

measured.

Figure 4.13 shows the magnetic field distribution in the central toroidal magnet

(CF) and the end toroidal magnet (EF). The toroidal magnets runs at a lower current

that they did in Run I as a cost-saving measure, because the momentum of muons

is primarily measured in the central tracker now. The average energy loss across the

toroidal magnet is 1.7GeV.

The muon system can be divided into the central detector, covering roughly

|η| < 1, and the forward muon system, extending the coverage to |η| < 2. The central

detector uses the same proportional drift tubes (PDTs) from Run I, which have fairly

large rectangular cells, 10.1 cm across. The tubes are filled with a faster gas mixture

than in Run I, however: 84% argon, 8% methane, and 8% CF4, for a maximum drift

time of about 450 ns. The B and C layers have three rows, or “decks,” of cells each,

while the A layer has four decks, except along the bottom of the detector, where it

has three decks. Approximately 55% of the central detector is covered by three layers
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of PDTs, and 90% by at least two layers. The wires are arranged parallel to the

magnetic field, which is in the y direction for the PDTs on the sides, and in the x

direction for the top and bottom PDTs.

The anodes are read out in pairs, with the wires ganged together on one side.

The time difference between the readouts from the two wires provides the position of

the hit along the length of the wire. It has a resolution of between 10 cm and 50 cm

depending on the location of the hit. Additionally, the cathodes use two separate

electrodes that have thicknesses that vary with position, and the relative charge

collected can be used to achieve a resolution of 5mm along the direction of the wire.

However, only the A layer and about 10% of the B and C layers are instrumented

like this. The drift distance resolution is σ ≈ 1 mm.

A problem found in the muon system during Run I was that the cathodes, made

from copper-clad Glasteel strips, would outgas and over time coat the anodes. A

method was developed to remove the coating, but for Run II, the electrodes were

replaced in the A layer PDTs and the B layer PDTs under the detector, because access

to those PDTs is difficult. The old cathodes remain in the other PDT’s, however.

The gas is recirculated independently for the A layer PDTs to keep them isolated for

this problem, and in general there is molecular filtering to remove contaminants from

the Glasteel.

The central detector has two layers of scintillators, the Aφ system at the A layer,

and the cosmic cap outside the toroid. The Aφ scintillators are 4.5◦ in φ to match the

CFT sectors for easier track matching, as are the new scintillators in the cosmic cap.

However, the scintillators that were added in Run I have the long side oriented along

φ. The time resolution of the Aφ scintillators is σ = 2.5 ns for all counters combined

without adjusting for differences in time-of-flight, light propagation in the counters,
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or cable length within each group of fifteen counters.

The forward muon system has new for Run II mini drift tubes (MDTs), filled with

90% CF4, 10% CH4. The MDTs are much smaller than the wire chambers in the

central system, of 0.94 cm× 0.94 cm cross section. Their drift times are hence much

shorter: less than 60 ns. The per plane muon hit detection efficiency is (95 ± 2)%.

In test beam the coordinate resolution was measured to be around 350µm, but due

to digitization electronics, it becomes about 0.7mm per hit. The MDTs do not

measure the position along the length of the wire; better resolution is provided by

the scintillators.

The forward detector has three layers of trapezoidal scintillators arranged in r-

φ geometry. The φ segmentation is 4.5◦, and there are about 12 concentric zones,

representing η segmentation of 0.12 in the nine inner zones, 0.07 in the three outer

zones. The time resolution for all counters combined for hits from reconstructed muon

tracks is σ = 2.2 ns.

The muon system is used for triggering at all levels. At Level 1 there are two

systems for triggering [119, 120], one based on the wire chambers and the scintillators,

and one that attempt to match muon scintillator hits with tracks from the CTT. For

the former, the scintillators are used to associated a signal in the wires with a bunch

crossing, and the loose triggering requirement is defined if there is an A layer wire

hit (or any layer in the bottom of the detector), while a tight trigger requires both

an A layer and a B (in the forward detector) or C (in the central detector) layer wire

hit. For the latter, there is a similar loose and tight requirement based on scintillator

hits in various layers, and with the CTT track match, it is also possible to have a

pT cut using the CTT track. The Level 2 muon system [121] receives information

from the L1 trigger and also information with fast calibration done straight from the
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muon system. It can improve rejection by using better scintillator timing and finer

tracking.

The upgraded trigger system for high-luminosity running during the later stages

of Run II (Run IIb) uses the same hardware as the L1 Muon system for matching L1

calorimeter jet or electron to CTT tracks [122]. The new system is now in use.

4.2.6 Luminosity Monitor

The main purpose of the luminosity monitor (LM) is to determine the luminosity

that D0 is observing, which it accomplishes by measuring the rate of inelastic pp̄

collisions. The luminosity is measured as L = fN̄LM/σLM, where N̄LM is the average

number of inelastic collisions per beam crossings measured by the LM, f is the beam

crossing frequency, and σLM is the effective cross section, taking into account the

acceptance and efficiency of the LM [123]. The uncertainty on the luminosity is

currently estimated to be 6.1% [124].

The LM consists of two arrays of 24 plastic scintillator counters with photo-

multiplier tube readouts covering 2.7 < |η| < 4.4 placed in front of the End Calorime-

ters. The detectors can be seen on Fig. 4.6.
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Chapter 5

Object Reconstruction

The data that is measured by the D0 detector needs to be processed for use in physics

analyses. The hits in the SMT and CFT need to be combined into tracks. From the

tracks the vertex needs to be determined. The calorimeter needs to be cleaned up

from noise. The electrons, muons, and jets must be identified. Jets with b-quarks

must be identified. Describing those steps is the purpose of this chapter.

5.1 Tracking

The data in the SMT and CFT detectors—the charge gathered by the microstrips or

the light collected from the fibers—is first processed into “hits.” Then the purpose of

the tracking algorithms is to determine the trajectories of the charged particles that

caused particular sequences of hits, called tracks.

Currently two algorithms are used to find tracks and their results are combined

at the end. The first is called histogram track finding (HTF) [125]. The algorithm

uses the notion that if there is a hit at point (x, y), then assuming a track coming
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from the origin with curvature ρ and direction at the origin φ, the set of all parameter

pairs, (ρ, φ), of tracks that go through (x, y) forms a line in parameter space. This

mapping of points to lines in parameter space is called a Hough transform. All the

hits of a given track would each map into a line, and these lines would intersect at the

point, (ρ′, φ′), that corresponds to the actual track. A similar Hough transform can

be made between hits in (r, z) to lines in the parameter space (z0, C), where z0 is the

position of the track origin along the z axis, and C = dz/dr is the track inclination.

The HTF algorithm fills histograms in (ρ, φ) or (z0, C) with the Hough transform

lines. The intersection points, which correspond to real tracks, should correspond to

peaks in the histogram; however, straightforward peak finding is not feasible. Instead,

the histograms are cleaned up by removing bins with few entries, and then each bin

in parameter space is considered to be a track template. Kalman filtering is used

to select tracks from the templates [126, 127]. More details on how the algorithm is

applied can be found in Ref. [125].

The other algorithm is called the alternate algorithm (AA) [128]. Working in 2D,

the algorithm starts with three SMT hits to make a track hypothesis. The second

hit must be on a following layer within ∆φ of 0.08. The third, on a following layer,

must be on a circle of radius greater than 30 cm and axial impact parameter with

the beam spot of less than 2.5 cm. The overall fit must have χ2 < 16. Each track is

extrapolated to the next layer of the SMT or CFT repeatedly, and hits are added to

the track hypothesis if the increase of χ2 is less than 16. If there are multiple hits in

a given layer, they each become new hypotheses. A certain number of misses (i.e., no

hits) in layers are allowed to improve the efficiency. The track hypotheses are ordered

based on number of hits, and those that have equal number of hits by the fewest

number of misses, and those that have the same number of hits and misses, by the
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better the χ2 of the fit. Tracks are accepted in that order if they pass a criteria that

they do not share too many hits with already accepted tracks.

To further reduce the number of fake tracks, primary vertices are determined

using the accepted tracks, and every track that comes close to a vertex is given two

additional hits in the rankings. Using this new weight, the tracks are resorted, and a

new pool of tracks is determined.

The description so far would preclude tracks with no SMT hits. Therefore, the

same procedure is repeated starting with three CFT hits, but to control the huge

combinatorics with stereo hit associations, the tracks must pass near a primary vertex

determined from the SMT tracks.

At the end, the HTF tracks and the AA tracks are combined, refitted, and

smoothed, as explained in Ref. [127], using the Kalman algorithm.

5.2 Primary Vertices

The location of the hard scatter, known as the primary vertex, is needed to correctly

reconstruct the event. The main difficulty with determining the primary vertex is

distinguishing which tracks come from it and which come from secondary vertices

due to heavy quark decays or additional minimum bias interactions that happen to

be close to the primary vertex. To accomplish this, we use an adaptive primary vertex

algorithm [129].

The algorithm first clusters tracks with pT > 0.5 GeV, and two or more SMT

hits if they are in an area with SMT acceptance, into different interaction areas 2 cm

long along the z axis. Then, for each cluster, the location and width of the beam is

determined using a Kalman filter with a “tear-down” approach, meaning that tracks
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with the highest χ2 contribution are removed, until the total vertex χ2 per degree of

freedom is smaller than 10. Subsequently only tracks with (dca/σdca < 5) are used,

where dca stands for distance of closest approach to the beam position and dca is the

standard deviation of the dca distribution.

Next comes the actual adaptive primary vertex algorithm, which assigns the

following weighting function for each track i:

wi =
1

1 + e(χ2
i −χ2

cutoff)/2T
(5.1)

where χ2
i is the χ2 contribution of track i to the vertex, and χ2

cutoff = 4 and T = 1

tunable parameters, with their chosen values given. The algorithm consists of the

following steps:

1. Start with all weights wi = 1.

2. Weighing each track by its weight wi, determine the primary vertex using a

Kalman Filter.

3. Update the weights wi using the new vertex. If wi < 10−6, set the weight to

zero for that particular track.

4. If all the weights changed by less than 10−4, then done. Otherwise, repeat from

step 2. (There is also a maximum number of iterations exit in case convergence

fails.)

This algorithm has been shown to be robust in cases with heavy flavor. For Z → qq̄

events the vertex resolution is 9.3µm with a pull of 0.94, and more importantly, for

Z → bb̄, the resolution is 12.8µm with a pull of 1.02. The previous PV algorithm

had a resolution of 14.1µm with a pull of 1.40 for Z → bb̄ events.
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After the list of primary vertices have been created, one must be chosen as the

primary vertex of the hard scatter, while others are expected to come from minimum

bias events. Minimum bias events have low pT tracks, so a probability can be as-

signed to each track, based on its pT, as to whether it comes from a minimum bias

interaction [130]. From the probabilities of the tracks associated with a vertex, the

probability that a vertex came from a minimum bias interaction can be determined.

The vertex chosen as the primary vertex is the one with the lowest such probability.

5.3 Calorimeter Preprocessing

Before using the calorimeter data to reconstruct objects, the data is processed to

remove noise. During data taking, individual cells can become “hot,” that is, show

high energy due to hardware problems. Such cells are usually suppressed so as to not

affect data taking rates. At the Level 3 trigger and in the early stages of offline pro-

cessing, the New Anomalous Deposits Algorithm (NADA) is used to further suppress

hot cells and transient spikes in energy [131, 132, 133]. The general idea behind that

algorithm is that if a cell has a high energy deposit (Ecell > 1 GeV in the original

algorithm) while the sum of the energy of the 26 cells that surround it in a 3× 3× 3

cube is low (Ecube < 100 MeV in the original algorithm, but only summing the energy

of cells in the cube with E > 100 MeV), then the energy deposit is unphysical, and

the cell’s energy is set to 1MeV. There are special cases for certain layers (EM3, for

example) and calorimeter boundaries in depth or η, and some of the thresholds can

be dynamic, scaled as a fraction of the cell energy for energetic cells, but the basic

idea is the same.

Another similar algorithm is used to remove noise: the T42 algorithm [134, 135,
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136]. This noise could be electronics noise, uranium decays, or pile-up from inter-

actions in previous bunch crossings, and so on. Zero-suppression zeros all cells with

absolute energies less than 2.5σ above the pedestal value to remove most of this noise.

The T42 algorithm additionally removes all negative energies. Furthermore, the T42

algorithm zeros all cells with energy between 2.5σ and 4σ above the pedestal value

unless the cell has a neighbor with an energy over 4σ above the pedestal. Thus,

around energy deposits that are considered to be signal-like, the zero-suppression is

2.5σ, but where there is no signal-like deposit, it is raised to 4σ. Neighbors are chosen

similarly as in the NADA algorithm.

5.4 Jets

Outgoing quarks and gluons from the hard scatter form jets, which are detected in

the calorimeter. The purpose of a jet algorithm is to reconstruct these jets from the

energy deposits in the calorimeter towers in such a way that the kinematic properties

can be related to those of the outgoing quark or gluon [137]. An ideal algorithm needs

to fulfill certain requirements [137, 138]. It needs to be infrared safe, as demonstrated

in Fig. 5.1. The jet algorithm must not be sensitive in its behavior to soft radiation.

The ideal jet algorithm also needs to be collinear safe, which means that it should

not be sensitive to collinear radiation. For example, if a jet algorithm depends on the

energy deposit in just one tower as a seed, collinear radiation going into another cell

could cause the energy to not be enough to form a seed. The algorithm should be

invariant to boost in the longitudinal direction, which is not controlled in a hadron

collider. The algorithm should be insensitive to the details of the final state (such as

extra radiation). And of course, the algorithm should be experimentally well behaved:

straightforward and efficient to implement, stable with luminosity, efficient, precise,
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Figure 5.1: Diagram showing possible infrared sensitivity in jet algorithms.
In this case the presence of soft radiation changes the algorithm’s behav-
ior from finding two jets to merging them into a single jet. (Figures from
Ref. [137].

unbiased.

In an attempt to try to fulfill the above requirements, jets are reconstructed using

the Run II Cone Algorithm [137, 138], which also goes by the name of Improved

Legacy Cone Algorithm (ILCA). The algorithm is seed-based, in the sense that it

starts looking for jets from seeds. Therefore, the first step is to find the seeds. For

collinear safety the algorithm doesn’t just use individual calorimeter towers as seeds

but instead uses a simple cone algorithm to form preclusters for that role. The

algorithm starts out with a pT-ordered list of calorimeter towers. It takes the first

tower, and if it has pT > 500 MeV, it makes it a precluster. (There are special

conditions for towers with a lot of energy in the CH layers or in the EC massless gaps.)

It then loops through the remaining towers, adding those within
√

(∆η)2 + (∆φ)2 <

0.3 and pT > 1 MeV to the precluster. Whenever a tower is added to a precluster, it

is removed from the list of towers. Then the algorithm continues to the next tower,

and if it has pT > 500 MeV, it makes a new precluster, and repeats, until all the

preclusters are made.
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Next comes the clustering stage, which builds proto-jets starting from the preclus-

ters. The preclusters are pT-ordered, and the algorithm loops through all of them in

turn. Using the definition, ∆R =
√

(∆y)2 + (∆φ)2, where y refers to the rapidity, the

algorithm first checks if the precluster under consideration has ∆R < 0.25 with any

proto-jet. If so, it skips to the next precluster. Otherwise, the precluster is considered

a seed for a proto-jet candidate PC. All towers within ∆R < 0.5 of PC are added to

it to make a new candidate PC ′. If PC ′ has pT < 3 GeV, the algorithm skips to the

next precluster. Otherwise, the algorithm checks to see if the proto-jet candidate was

stable, that is if ∆R(PC, PC ′) < 10−3. If it was stable, and PC ′ is not a duplicate

of an already found proto-jet, the algorithm makes PC ′ a proto-jet. Otherwise, the

algorithm makes PC ′ → PC and iterates again adding towers within ∆R < 0.5 until

the proto-jet candidate is stable (or an iteration limit is reached).

To make the algorithm infrared safe, in addition to the proto-jets found above,

there is an attempt to add additional proto-jets using seeds at the midpoints (sums)

of any two proto-jets. The algorithm proceeds as when preclusters are used as seeds,

except that it does not first check that ∆R < 0.25 with any proto-jet or that a PC ′

is not a duplicate before making it into a proto-jet.

The last step is splitting or merging overlapping jets. Taking a pT-ordered list of

the proto-jets, the algorithm checks if the first proto-jet does not share any towers

with any other proto-jets, and if it does not, it promotes it to a jet. Otherwise, taking

the highest pT neighbor proto-jet, the algorithm determines if the pT of the shared

towers is greater than 50% of the neighbor’s pT. If it is, the two jets are merged to

create a new proto-jet and it is back into the list of proto-jets while the individual

ones are removed. If shared pT is less than 50%, then the shared towers are split by

assigning them to the proto-jet that is closest in ∆R. In either case, the proto-jets
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are resorted, and the algorithm iterates again.

After that step the list of jets is complete. Only those with pT > 6 GeV are kept

at this point. (The jet energy scale is not yet corrected.)

The following variables are used in the jet quality cuts:

• fCH: the fraction of the jet’s pT contained in the CH layers of the calorimeter.

• fEM: the fraction of the jet’s pT contained in the EM layers of the calorimeter.

• L1SET: the scalar sum of the trigger tower pTs.

• n90: the minimum number of towers needed to contain 90% of the jet’s pT.

• f90: the fraction of the total towers needed to contain 90% of the jet’s pT.

• L1ratio: L1SET divided by the uncorrected pT of the jet, excluding the CH and

MG layers.

• ση: the width of the jet in η.

Jets are considered to be of good quality if they fulfill the following criteria [139]:

• Pass coarse hadronic fraction cuts because the CH layers of the calorimeter tend

to be noisy:

– fCH < 0.4 or

– fCH < 0.44 and |η| < 0.8 or

– fCH < 0.6 and 0.85 <
∣

∣ηdet
∣

∣ < 1.25 and n90 < 20 (alternate cut for ICR

jets where the detector has three CH layers) or

– fCH < 0.46 and 1.5 < |η| < 2.5.
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• Pass EM fraction cuts to remove jets due to noise in the hadronic calorimeter:

– fEM > 0.05 or

–
∣

∣

∣

∣ηdet
∣

∣− 1.25
∣

∣+max[0, 40(ση−0.1)] < 0.13 (narrow jet in ICR where there

is no EM layer) or

– fEM > 0.03 and 1.1 <
∣

∣ηdet
∣

∣ < 1.4 (wide jet in ICR where there is no EM

layer) or

– fEM > 0.04 and |η| > 2.5.

Jets that overlap with electrons or have fEM > 0.95 are also removed. We take

top loose, defined in Sec. 5.5, to be the electron criteria in that case.

• Pass L1 trigger tower confirmation to make sure that the jet is not just precision

readout noise but is also visible in the trigger towers:

– L1SET > 55 GeV or

– if outside of L1 coverage, f90 < 0.5 or fCH < 0.15

– if inside L1 coverage,

∗ L1ratio > 0.5 or

∗ L1ratio > 0.35 and pT < 15 and |η| > 1.4 or

∗ L1ratio > 0.1 and pT < 15 and |η| > 3.0 or

∗ L1ratio > 0.1 and pT ≥ 15 and |η| > 3.0.

The goal of the above criteria is to be 98–99% efficient on real jets without introducing

significant unphysical jet background. The fEM > 0.95 cut is not included in that

efficiency goal, however, and that can decrease the efficiency, as can be seen in Fig. 5.2.

Real electrons and photon background might be included in in the dijet sample, but
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Figure 5.2: The jet fEM distributions for various ranges of η. The distribution
in black is for dijet events that is expected to be mostly good jets, while the
red and the blue distributions are meant to model fakes. The figures are for
the CC, ICR, EC (1.5 < |η| < 2.5), and EC–FWD (|η| > 2.5) (Figures from
Ref [139].)

considering the shape of the fEM for real electrons, Fig. 5.6, there is also significant

jet content.

Finally, the energy of the jet must be corrected by the jet energy scale (JES) [140]

so that it better matches the energy of the particle jet, that is, the jet of stable particles

that comes out of the hard scatter after hadronization. The form of the correction is

given in the following equation:

Eparticle =
Eraw −O

FηRS
(5.2)



5.4. Jets 80

Energy not from the hard scatter (noise, additional minimum bias events, pile-up from

previous bunch crossings) must be subtracted. This is the offset correction, given by

O in Eq. 5.2. The correction is measured by determining the average per-tower

energy in bunch crossings that consist only of minimum bias events (i.e., without

a hard collision). The factors Fη and R are both response calibrations. Fη is η-

intercalibration, which corrects the response to be uniform in η across the CC, ICR,

and EC, and R is the absolute calibration. The corrections are measured by γ+jets

events, because the EM energy is much more precisely measured, and also by di-jet

events for intercalibration. Finally, S is the showering connection, which corrects for

part of the shower leaking outside the jet cone, and also for outside energy leaking

into the cone. It is measured with γ+jet data and Monte Carlo events. Figure 5.3

shows some of these corrections.

The total fractional uncertainties after making the above corrections is given in

Fig. 5.4. However, one is often more concerned about differences in the energy scale

between data and simulated (MC) events. For that, Fig 5.5 shows the difference

between data and MC of the hemisphere observable (H), defined γ+jets events as

the ratio of the pT in the direction opposite the photon divided by the pT in the

direction of the photon.

Additionally, jets that contain a muon within ∆R(µ, jetaxis) < 0.5 are corrected

for the momentum carried away by the muon and its neutrino, which is assumed to

have the same momentum as the muon. This correction is important for heavy flavor

jets where the b-quark decays muonically.
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Figure 5.3: The offset term as a function of η and number of primary vertices
(top), the uncorrected jet response as a fraction of the corrected jet response
(middle), and the showering correction (bottom) [140].



5.4. Jets 82

   (GeV)uncorr
T,jetE

10 210
   (GeV)uncorr

T,jetE
10 210

F
ra

ct
io

na
l u

nc
er

ta
in

ty

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Total
Response
Showering

Offset

DØ Run II preliminary
 = 0.0

jet
η = 0.5,   coneR

   (GeV)uncorr
T,jetE

10 210
   (GeV)uncorr

T,jetE
10 210

F
ra

ct
io

na
l u

nc
er

ta
in

ty

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Total
Response
Showering

Offset

DØ Run II preliminary
 = 1.0

jet
η = 0.5,   coneR

   (GeV)uncorr
T,jetE

10 210
   (GeV)uncorr

T,jetE
10 210

F
ra

ct
io

na
l u

nc
er

ta
in

ty

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Total
Response
Showering

Offset

DØ Run II preliminary
 = 2.0

jet
η = 0.5,   coneR

Figure 5.4: Jet energy scale uncertainties vs the uncorrected ET at η = 0
(top), η = 1 (middle), and η = 2 (bottom) [140].



5.4. Jets 83

 (GeV/c)
γT

p0 20 40 60 80 100 120 140 160 180 (GeV/c)
γT

p0 20 40 60 80 100 120 140 160 180

H
em

is
ph

er
e

∆

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15
Data - MC

D0 RunII Preliminary

|=0.0-0.4ηRcone = 0.5, |

Data - MC

 (GeV/c)
γT

p0 20 40 60 80 100 120 140 160 180 (GeV/c)
γT

p0 20 40 60 80 100 120 140 160 180
H

em
is

ph
er

e
∆

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15
Data - MC

D0 RunII Preliminary

|=0.4-0.8ηRcone = 0.5, |

Data - MC

 (GeV/c)
γT

p0 20 40 60 80 100 120 140 160 180 (GeV/c)
γT

p0 20 40 60 80 100 120 140 160 180

H
em

is
ph

er
e

∆

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15
Data - MC

D0 RunII Preliminary

|=0.8-1.2ηRcone = 0.5, |

Data - MC

 (GeV/c)
γT

p0 20 40 60 80 100 120 140 160 180 (GeV/c)
γT

p0 20 40 60 80 100 120 140 160 180

H
em

is
ph

er
e

∆

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15
Data - MC

D0 RunII Preliminary

|=1.2-1.6ηRcone = 0.5, |

Data - MC

 (GeV/c)
γT

p0 20 40 60 80 100 120 140 160 180 (GeV/c)
γT

p0 20 40 60 80 100 120 140 160 180

H
em

is
ph

er
e

∆

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15
Data - MC

D0 RunII Preliminary

|=1.6-2.0ηRcone = 0.5, |

Data - MC

 (GeV/c)
γT

p0 20 40 60 80 100 120 140 160 180 (GeV/c)
γT

p0 20 40 60 80 100 120 140 160 180

H
em

is
ph

er
e

∆

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15
Data - MC

D0 RunII Preliminary

|=2.0-2.4ηRcone = 0.5, |

Data - MC

Figure 5.5: Difference between data and MC imbalances in γ+jet events for
various |ηjet| ranges. The dashed line is the quoted uncertainty [140].
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5.5 Electrons

The electron identification algorithm should select electrons and reject background.

Sources of background are π0 showers which overlap with a nearby track, photons

that convert to e+e− pairs, charged pions, and jet fluctuations. A study showed π0 or

η mesons to be the most common particles that fake electrons after requiring a track

matched to the electron candidate [141].

Electrons, like jets, start out as calorimeter objects [142, 143]. The algorithm to

build the EM clusters is the simple cone algorithm, similar to what is used to make

preclusters for the jet algorithm. The algorithm uses a cone of ∆R < 0.4 in (η, φ)

around seed towers1 with pT > 500 MeV, and using the notation of EEM being the

energy in the EM layers and Etot the total energy of the cluster, the cluster becomes

an electron candidate if it has:

pT > 1.5 GeV

fEM ≡ EEM

Etot

> 0.9

fiso ≡
Etot(R < 0.4) − EEM(R < 0.2)

Etot(R < 0.4)
< 0.2

and at least 40% of its energy in the most energetic tower. In the last equation,

E(R < r) refers to the energy (EM or total) within a cone in (η, φ) of radius r. Thus,

electrons are isolated calorimeter clusters with most of their energy in the EM layers of

the calorimeter. We tighten the isolation requirement for the electrons to fiso < 0.15

to further reduce the jet background. Fig. 5.6 shows plots of fEM and fiso for CC

electrons and fakes. For this plot and all others in this section, the real electrons are

from dielectron samples dominated by Z → e+e− events, and the background is from

1For electrons, the towers only use the EM1, EM2, EM3, EM4, and FH1 floors.
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Figure 5.6: The fEM (left) and fiso (right) distributions for real and fake
electrons (Figures from Ref [143].)

a “fake” electron back to back with a jet, with low 6ET.

The algorithm as described above is the loosest electron quality definition we

use: d0correct, after the software package it was originally defined in. It is also called

Preselect iso15 because it is the preselection step with fiso < 0.15 that many other

electron quality definitions build upon. (There is a similar Preselect iso20 definition

with only the fiso < 0.2 cut.)

Because the d0correct/Preselect iso15 algorithm does not have a track match, it

also accepts photons with high efficiency, but the fEM and fiso requirements signifi-

cantly suppress jets. The efficiency of this algorithm in the CC for real electrons with

pT > 15 GeV from Z → e+e− events is around (96± 2)% [144], with the main culprit

being intermodule cracks in the coverage in the CC, the “φ-cracks2.” In the fiducial

areas, the efficiency is (99.2±0.8)%. The efficiency was measured was using a tag and

probe technique on an electron+track data set dominated by Z events, as explained

in more detail in Sec. 6.5.1. Electrons and photons of d0correct quality, pT > 5 GeV,

and |η| < 2.5, are used for EM corrections to the 6ET measurement, as explained in

2One of the main reasons that the ATLAS calorimeter has the accordion design is to
avoid such inefficiencies.
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Sec. 5.7.

Other electron quality definitions use the following variables:

• H-matrix:

The purpose of the H-matrix is to measure how much the energy deposits in the

calorimeter are compatible with an electron shower [145]. Given N electrons,

the covariance matrix is calculated as:

Mij =
1

N

N
∑

n=1

(

x
(n)
i − x̄i

)

Hij

(

x
(n)
j − x̄j

)

(5.3)

for a set of electron shower variables, xi, and their means, x̄i. This is repeated in

various η ranges to account for the different electron response. We then define

H = M−1. For a given electron candidate k, we can determine a χ2 of how well

its shower matches that of an electron:

χ2
hm =

7
∑

i,j=1

(

x
(k)
i − x̄i

)

Hij

(

x
(k)
j − x̄j

)

(5.4)

The lower the value of χ2
hm, the more electron-like the shower is. We use the

H-matrix variant that uses seven variables:

1. Energy fraction in the EM1 floor.

2. Energy fraction in the EM2 floor.

3. Energy fraction in the EM3 floor.

4. Energy fraction in the EM4 floor.

5. The rφ width of the shower in the EM3 floor.

6. log10(E)
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7. zvtx/σzvtx

• Track match χ2:

Electrons are expected to leave a track in the central tracking system, and this

track should be well centered with the calorimeter cluster. Having a track thus

provides a good way to distinguish electrons from neutral particles that do not

leave a track. Furthermore, the quality of the track match can be used to

distinguish between electrons and neutral particles that happen to overlap with

a track by chance. There are two ways to define the track match χ2:

χ2
spatial =

(

δφ

σφ

)2

+

(

δz

σz

)2

(5.5)

χ2
with E/p =

(

δφ

σφ

)2

+

(

δz

σz

)2

+

(

ET/pT − 1

σET/pT

)2

(5.6)

(5.7)

where the variables are defined as

– δφ = φtrack − φclus, where the angles are measured at the EM3 floor. σφ is

the expected width of δφ for an electron.

– δz = ztrack − zclus, where the z values are measured at the EM3 floor. σz

is the expected width of δz for an electron.

– ET is the transverse energy of the cluster.

– pT is the transverse momentum of the track.

– σET/pT
is the expected width of ET/pT for an electron.

For electrons ET/pT ≈ 1, but if a track is randomly associated with the calorime-

ter cluster, this would not necessarily be the case. What is used to define the
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quality of the track mach is the probability for a track to have a certain χ2,

P (χ2).

• Likelihood [141]:

A number of variables (noted as the vector x) are put together to define a

likelihood that a track-mathed electron object is really an electron:

L =
Psig(x)

Psig(x) + Pbkg(x)
(5.8)

where Psig(x) =
∏

i Psig,i(xi) and Pbkg(x) =
∏

i Pbkg,i(xi), that is, the proba-

bilities for signal and background are the product of the probabilities for the

individual variables. The associated track is the one with the highest P (χ2
spatial)

that has δφ < 0.05 and δη < 0.05. The version of the likelihood that we use is

based on seven variables:

1. spatial track match probability, P (χ2
spatial)

2. (calorimeter cluster ET)/(track pT)

3. The distance of closest approach (DCA) of the associated track to the

primary vertex

4. H-matrix (χ2
hm)

5. EM fraction (fEM)

6. The number of tracks in a cone of size R = 0.05 in (η, φ) around the track

7. The sum of the transverse momenta of all the tracks other than the asso-

ciated track in a cone of size R = 0.4

The first two variables were discussed in the track match section; here the spatial

part and ET/pT are used as two separate variables. Isolated electrons should
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come from the primary vertex, so the DCA should be small. The H-matrix

and fEM have also been discussed before. Electrons are expected to have low

χ2
hm values and fEM ≈ 1. A loose cut of χ2

hm < 50 is applied before using the

likelihood. Finally, the last two variables are track isolation variables. Electron

tracks should be single, clean tracks, while electrons from photon conversion

should have two tracks, and jets or parts of jets faking electrons should have

extra tracks.

Plots of selected variables used in the likelihood are given in Fig 5.7. The real electrons

are from a dielectron data sample dominated by Z → e+e−, and the fake electrons

are from a sample of a (fake) electron back to back with a jet with 6ET < 15 GeV.

The next tighter electron quality we use is called top loose. It requires the fol-

lowing:

• Fulfill Preselect iso15 quality requirements

• χ2
hm < 50

• track match within δφ < 0.05 and δη < 0.05 with P (χ2
with E/p) > 0

• track pT > 5 GeV

The H-Matrix cut is very loose, with the incremental efficiency given Preselect iso15

electrons (from Z events with pT > 15 GeV) being (98.7 ± 0.6)% in the CC. This

is measured using a tag and probe method from a di-electron sample dominated by

Z events, as explained in Sec. 6.5.1. For the track match, the P (χ2
with E/p) > 0

requirement is only a technical issue due to finite precision in floating point numbers

on a computer. Tracks with zero probability are not returned, even if they are in the
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Figure 5.7: Selected electron discrimination variables distributions for real
and fake electrons: H-matrix, logP (χ2

spatial), and ET/pT down the first col-
umn; DCA, the number of tracks in a cone of size R = 0.05, and he sum of
the transverse momenta of all the tracks other than the associated track in
a cone of size R = 0.4 down the second column. (Figures from Ref [143].)
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Figure 5.8: Efficiencies for data and MC electrons with quality top loose as
a function of ηdet.

window. The track pT cut is imposed by the data skims we use, so we added it to the

electron quality definition. The incremental efficiency for the track match and track

pT cuts given Preselect iso15 electrons with χ2
hm < 50 and pT > 15 GeV in Z → e+e−

events is (89 ± 2)% in the CC. This efficiency drops quickly in the EC due to less

efficient forward tracking, being around 86% at
∣

∣ηdet
∣

∣ = 1.6 being around (56 ± 1)%

for 1.9 <
∣

∣ηdet
∣

∣ < 2.5, where it plateaus briefly, and falling to zero at
∣

∣ηdet
∣

∣ > 3.1

Given the η distribution of electrons from Z → e+e− events, the EC efficiency is

around 63%. A plot of the total efficiency for data and MC as a function of ηdet

is given in Fig. 5.8. The dip around ηdet ≈ 0 is a result of incomplete modeling of

tracking efficiencies in the MC.

The tightest requirement that we use is called top tight. It adds a likelihood cut

of L > 0.85 to the top loose quality. The incremental efficiency for the likelihood cut

given Z electrons with pT > 15 GeV that pass top loose is (89±2)% in the CC. In the
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Figure 5.9: Efficiencies for data and MC electrons with quality top tight as
a function of ηdet.

EC, it is around (84 ± 4)% for 1.5 <
∣

∣ηdet
∣

∣ < 2.5, then immediately dropping to less

than 40%, and approaching zero at
∣

∣ηdet
∣

∣ ≈ 3. Given the η distribution of electrons

from Z → e+e− events, the efficiency in the EC is 78%. A plot of the total efficiency

for data and MC as a function of ηdet is given in Fig. 5.9.

Measurement of the incremental likelihood efficiency for both real electrons and

fakes for events that pass our analysis’s selection cuts is used to estimate the number

of real electrons and fakes in our sample. Using the method explained in Sec. 6.7, the

incremental efficiency for real electrons is estimated at (88± 2)%3. The events in our

data sample have more jets, which tends to decrease the efficiency. The incremental

efficiency for fakes was measured to be 13–22% depending on the trigger version. The

selected events need to fire an electron trigger, which has a shower shape requirement

and can be considered to be analogous to a tighter H-matrix cut, and since that cut

3We do not use that number directly but parameterize the efficiency in ηdet and pT.
One-dimensional projections of that parametrization are shown in Sec. 6.7.
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changed between trigger versions, the tighter that cut is, the more electron-like the

fakes look. Note that the top loose requirements remove most object that could fake

electrons, so the incremental efficiency is for the most electron-like of the fakes.

5.6 Muons

Muon reconstruction involves several steps [146, 147]. First the hits need to be recon-

structed at the three layers of the muon system. Then hits in each individual layer

are reconstructed into straight-line segments [148]. Also, because there is no field

between them, tracks between layers B and C are matched. Subsequently, the muon

segments need to be reconstructed across the toroidal magnet to form what are called

local muon tracks [149]. The algorithm works by grouping segments into pairs that

pass certain cuts and propagating a track step by step from the BC segment, through

the toroid, to the A segment, taking into account the energy loss in the magnet. The

last step is to combine a local muon track with a central tracker track, which is done

using error matrix propagation, taking into account the magnetic field in the toroid

and solenoid and multiple scattering and energy loss in the calorimeter and toroid.

The matching is done at the distance of closest approach to the beam axis.

The various certified muon identification requirements are explained in Ref. [150].

We use muons of quality |nseg| = 3 medium, which means that the muon has:

• at least two A layer wire hits

• at least one A layer scintillator hit

• at least two BC layer wire hits
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• at least one BC scintillator hit (except for central muons with less than four

BC wire hits)

We require that the muon be matched to a central track with quality medium, which

means that the track reconstructed in the muon system must match a track recon-

structed in the central tracker with χ2/dof < 4 and the central track must have a

distance of closest approach with the primary vertex of |dca| < 0.2 cm, tightened to

|dca| < 0.02 cm if the track has an SMT hit. Furthermore, the muon must be away

from a jet with ∆R(µ, jet) > 0.5 in (η, φ). Finally, we require a cosmic veto cut,

which requires the scintillator hit times for both A and BC be within 10 ns of the

expected time for a muon coming from a collision in that bunch crossing. A muon

satisfying the above criteria we call a “loose” muon.

We also have a “tight” muon definition, which requires the same criteria as the

“loose” muon with the addition of the TopScaledLoose isolation criteria: (a) the

momenta of all tracks in a cone of radius R < 0.5 around the muon direction, except

the track matched to the muon, must add up to less than 20% of the muon pT; and

(b) the energy deposited in an annular cone of radius 0.1 < R < 0.4 around the muon

direction must be less that 20% of the muon pT.

Figure 5.10 shows the muon identification efficiencies, clearly showing the in-

efficiencies associated with the hole in coverage in the uninstrumented bottom of

the detector. Figure 5.11 shows the isolation efficiencies for theTopScaledLoose and

∆R(µ, jet) > 0.5 criteria, among others.
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Figure 5.10: Muon reconstruction efficiencies as a function of η and φ [150].
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Figure 5.11: Muon isolation efficiencies for TopScaledLoose (left) and
∆R(µ, jet) > 0.5 (right) [150].

5.7 Missing Transverse Energy

Before the collision the proton and antiproton only have momentum in the z direction,

so the momentum in the x-y plane, the transverse momentum, is zero. Conservation

of momentum guarantees that to be the case after the collision as well4. This fact

can be used to infer the presence of particles that escape detection, with neutrinos

being a prime example. The missing transverse energy, 6ET, is the negative of the

vectorial sum of the transverse momenta of particles observed in the detector. In

practice we compute the 6ET by adding up vectorially the transverse energies in all

cells of the EM and FH layers of the calorimeter [151]. This value is corrected for

the reconstructed particles with their associated energy scales. Jets are the prime

example. Cells in the CH layers are too noisy to be added unless they are inside

of jets, in which case they are included in the correction. The 6ET is corrected for

electrons and photons of d0correct quality, pT > 5 GeV, and η < 2.5, and for isolated

4Of course momentum is also conserved in the z direction, but we are not able to
measure the momentum that goes down the beam pipe.
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Figure 5.12: Missing transverse energy resolution along the x direction (left)
and y direction (right) as a function of the square root of the scalar sum of
the transverse energy in the calorimeter system [152].

muons with the “loose” quality we have defined. For isolated muons, the muons’

energy deposit in the calorimeter is subtracted from the 6ET measurement, and the

reconstructed muon pT is added instead. Note that muons inside of jets are treated

through the JES correction, not through a muon object correction.

Figure 5.12 shows the 6ET resolution during the time period used in this analysis

for zero bias and minimum bias events as a function of the square root of the scalar

sum of the transverse energy in the calorimeter system.

5.8 b-Tagging Jets

Many interesting physics processes, including single top production, result in b-quarks

in the final state, so it is desirable to distinguish jets that come from b-quarks from

other jets. There are two general categories of methods to distinguish b-jets from

other jets. The first are methods that depend on being able to find a leptonic decay

of the b-quark, such as the Soft Lepton Tag (SLT) algorithm [153]. They depend on

the fact that about 20% of b-jets are associated with a muon because B(b → µX) =
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10.95%, b-hadrons decay with an almost 100% probability to charm hadrons, and

B(c → µX) = 9.58%. The probability for light-quark jets to have muons is much

smaller. Thus, a jet with a muon inside of it is considered to be tagged by the SLT

algorithm.

The second category of methods to distinguish b-jets from other jets are those

that depend on the lifetime of b-mesons, which usually travel some distance from the

primary vertex before decaying. The distance traveled before decaying, the decay

length, was determined to average around 3 mm for b-quarks in tt̄ event [154]. The

algorithms can either try to reconstruct a secondary vertex (SV) where the b-hadron

decays, or they can rely on finding tracks offset from the primary vertex based on

their impact parameter, defined as the minimum distance to the primary vertex.

These algorithms require first that the primary vertex be found, and then build

jets out of the tracks [154, 155]. To build track-jets, first the tracks, ordered by pT,

are grouped one by one into clusters along the z axis, with a track being added to

a cluster if ∆z < 2 cm. Then for each cluster, using the closest primary vertex for

the calculation of the distance of closest approach in the transverse plane (|btransverse|)
and along z (bz) measurements, tracks are selected with

• NSMT hits ≥ 1

• pT > 0.5 GeV

• |btransverse| < 0.15 cm

• |bz| < 0.40 cm.

The |btransverse| and |bz| requirements are to reject long-lived particles such as K0
s and

Λ hadrons. Then, using a seed track with pT > 1 GeV, the simple cone algorithm,
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the same one as used for preclustering in jet reconstruction, is used to build track

jets with a cone size of R = 0.5 in (η, φ). Calorimeter jets are considered to have a

matched track-jet if they lie within ∆R < 0.5 of each other.

The Counting Signed Impact Parameter (CSIP) algorithm [156] considers a jet

tagged if the impact parameter significance of two tracks (fulfilling certain quality

requirements) is greater than three, or the signed impact parameter significance of

three tracks is greater than two. For each jet, let b be the impact parameter, and σb

its error. Then the impact parameter significance is S = b/σb. A sign is associated

with it, positive if the impact parameter projection onto the jet axis is between the

PV and jet, and negative if it is on the other side of the vertex. This signed impact

parameter significance can be renormalized with a scale factor. The Jet LIfetime

Probability (JLIP) algorithm [157] is similarly based on the impact parameter, but

builds a probability based on all the impact parameters of the jets.

At D0 the algorithm to tag jets based on a secondary vertex is called the Sec-

ondary Vertex Tagger (SVT) [154, 155]. The algorithm selects tracks from the track-

jet with an impact parameter significance S > 3.0 and builds all two-track seed

vertices from them. The algorithm then tries to add other tracks pointing to the

seeds according to the resulting χ2 contribution, until no more tracks can be associ-

ated with the seed. The decay length is defined as |Lxy| = |rSV − rPV |, with a sign

associated in the same way as for the signed impact parameter in the CSIP algorithm.

The decay length significance is defined as |Lxy/σ(Lxy)|. Operating points are defined

based on the decay length significance, the minimum impact parameter significance,

pT, number of SMT hits, and χ2 of the tracks used, the χ2 of the SV, the vertex

collinearity, and so on.

A neural network (NN) tagger was built upon primitives from the CSIP, JLIP,
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Rank Variable Description

1 SV TSL DLS decay length significance of the Secondary Vertex (SV)

2 CSIP Comb weighted combination of the tracks’ IP significances

3 JLIP Prob probability that the jet originates from the PV

4 SV TSL χ
2
dof chi square per degree of freedom of the SV

5 SV TSL NTracks number of tracks used to reconstruct the SV

6 SV TSL Mass mass of the SV

7 SV TSL Num number of SVs found in the jet

Table 5.1: The variables used by the NN tagger [159].

and SVT algorithms [158, 159]. The SLT algorithm is excluded because it is used to

measure the efficiency of the tagger. The variables used to discriminate b-jets from

other jets, ranked in order of separation power, are given in Table 5.1: The SV TSL

variables refer to the SVT algorithm run at the super-loose operating point. The

CSIP combination is a weighted combination of the number of tracks with signed

impact parameter significances greater than 2 or greater than 3, and also less than

-2 or less than -3 (but with ∆φ < 1.15 with the jet). The SV TSL Mass assumes the

tracks are from pions, and corrects the mass for neutral particles.

For this analysis, we have chosen to use the NN tagger at the TIGHT operating

point which requires the NN output to be greater than 0.775. The efficiencies for data

are given in Fig 5.13, and the fake rates are given in Fig. 5.145. The average fake

rate for this operating point is 0.47% for jets in the CC, and its average b-tagging

efficiency on data is 47% for jets up to |η| = 2.56 [159].

5How these are calculated is explained in Sec: 6.8.2
6Quoted are the preliminary versions used in the analysis.
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Chapter 6

The Analysis: Event Selection

The analysis is divided into three steps: event selection, the development of a multi-

variate technique for discriminating between signal and background, and extracting

a result. The selection step consists of loosely selecting the data to be analyzed,

as well as constructing an appropriate background model. A common selection was

shared by every analysis done in the single top subgroup for the 0.9 fb−1 data set. The

second step, the multivariate analysis, is unique for each analysis technique. There

were three primary techniques employed in the original published result [91]: Boosted

Decision Trees (DT) [160], Bayesian Neural Networks (BNN) [161], and Matrix El-

ements (ME) [162]. A second iteration of the BNN has since been done [92, 163],

and this thesis describes the second iteration of the ME technique. The third step,

extracting a result, consists of applying systematic uncertainties and determining the

cross section and significance.

This analysis only uses events with two or three jets, and one or two of those jets

need to have a b-tag. The signal to background ratio is too low in zero-tagged events,

and four-jet events are too computationally challenging for only a marginal benefit
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at best. A graphical representation of how much signal and background falls in each

combination of number of jets and number of b-tags can be seen in Fig. 6.1 for single

top production via s-channel and t-channel processes. The different combinations of

lepton type, number of jets, and number of b-tags are analyzed separately because of

their different signal and background makeup, and combined only at the end. Thus,

this analysis has eight different channels: 2 lepton types (e, µ) × 2 number of jet bins

(2, 3) × 2 number of tag bins (1, 2).

The purpose of this chapter is to describe the first steps of the analysis, the

selection. The two remaining steps are covered in the two subsequent chapters.

6.1 Background Processes

The single top event signature, described in Sec. 3.1, consists of one charged lepton,

6ET, and two, sometimes three jets, with at least one of them being a b-jet. Background

processes that can mimic the signal event topology include:

• W+jets

Events consisting of a W boson and extra jets form the largest background.

The cross section for W+2jets is over 1000 pb [164, 165], including a 1% Wbb̄

contribution, which has the same final state as s-channel single top. Requiring

one or more b-tagged jets is the primary way to reduce the W+light jet back-

ground, though it still remains a major background. In addition to Wbb̄, Wc

and Wcc̄ have higher b-tagging fake rates, so they become a higher percentage

of the W+jets sample after b-tagging.

• Z/γ∗+jets

Events with Z/γ∗ have two isolated leptons (e+e−, µ+µ−, or τ+τ−) in the final
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Figure 6.1: Percentages of the selected s-channel (upper table) and t-channel
(lower table) signal events and signal:background ratios in each analysis chan-
nel.
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state. For those with e+e− or µ+µ− to mimic the single top event topology, one

of the leptons needs to be lost, either by not being reconstructed or by overlap-

ping with a jet. Some ways that an electron can fail to be reconstructed include

if it falls in a φ-crack in the central calorimeter, or goes into the Intercryostat

Region (ICR), or fails an electron identification cut. A muon can fail to be re-

constructed if it falls in the uninstrumented area in the bottom of the detector

or fails muon identification cuts. The main method for Z/γ∗(→ τ+τ−)+jets

events to mimic single top is for one of the taus to decay leptonically and the

other hadronically. Overall, after selection, the Z/γ∗+jets background is an

order of magnitude smaller than that from W+jets.

• WW , WZ, and ZZ

WW and WZ diboson events can mimic the signal topology if a W boson

decays leptonically and the other boson decays into quarks. However, the cross

sections for the diboson processes are a few picobarns each, so they are only

a small background. ZZ diboson events are less likely to pass the selection

because they require one Z boson to decay to e+e− or µ+µ− and subsequently

have one lepton to be lost, or to τ+τ− with one of the taus decaying leptonically

and the other hadronically, suffering from a low branching ratio.

• QCD Multijets

Multijet events form a background in the electron channel when a jet is misiden-

tified as an electron and mismeasurement produces a significant 6ET. The prob-

ability to misidentify a jet as an electron is rather small, about 10−4, but the

≥3 jet cross section is so large that the overall contribution is significant. Mul-

tijet events can also form a background in the muon channel when a muon is

created by the in-flight decay of a pion or kaon, or from punch-through, which
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is when particles from a jet leak out of the calorimeter and enter the muon

system. Tighter tracking and isolation requirements can suppress these back-

grounds. Requiring b-tagging reduces the multijet backgrounds in both the

electron and muon channels.

• Heavy flavor production (bb̄, cc̄)

Heavy flavor production can contribute like the multijet background in the

electron channel with a jet faking an electron. Though its cross section is much

smaller than that for multijet events, it is not suppressed by b-tagging. In the

muon channel, this process contributes to the background when one of the b-

quarks decays muonically and the muon either travels wide of its jet or the

jet is not reconstructed. (A similar background in the electron channel, of an

electron traveling wide from a jet, is small.) This background will subsequently

be included implicitly in the “multijet” background category.

• tt̄ production

The production of tt̄ pairs by the strong force (NNLO cross section = 6.77 ±
0.42 pb, for mt = 175 GeV, Q2 = m2

t [166]) is a significant background. The

relevant processes have a larger multiplicity of final-state particles than single

top production, but they contain top quarks and W bosons, so the kinematics

are similar. The tt̄→ℓℓ process can mimic the single top signature if one lepton is

lost, in which case it usually falls in the two or three jet bin. A larger background

is tt̄→ℓ+jets, which can enter the three-jet bin, which has significant single-top

content, if one jet is lost.
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6.2 Signal and Background Modeling

To measure signal acceptance and extract expected results, we need a model of

the signal. For that purpose, we have generated single top event samples with the

CompHEP-SingleTop [167, 56] Monte Carlo event generator. SingleTop produces

events whose kinematic distributions match those from NLO calculations. Ref. [77]

showed that for s-channel single top production, the LO distributions times a K-

factor match the NLO distributions. Therefore, SingleTop uses the LO diagrams

times a K-factor. For the t-channel, however, the situation is more complicated be-

cause the LO diagrams, of the form qb → q′t, are found to not be adequate. The

W -gluon fusion diagrams of the form qg → q′tb̄ need to be applied as a correction.

The diagrams cannot just be added, however, because the gluon splitting kernel is

part of the b-quark PDF used in the LO diagram. The double counting is avoided by

splitting the phase space of the diagrams, as explained below.

Within the proton, b-quarks are formed by gluon splitting, which can be modeled

well by ISR in pythia [168] for the LO t-channel diagram. However, it is found

that the hard “third jet” b̄-jet distribution is not modeled well by the ISR jet. The

W -gluon fusion diagrams, on the other hand, model the hard b̄-jet distributions well,

but not the soft because they do not model the large logarithmic corrections for soft

g → bb̄. Those corrections are included in the b-quark PDFs used by the LO diagrams.

Therefore, it is useful to split the phase space by the hardness of the b̄-jet, and use

the LO diagram for soft b̄-jets and the W -gluon fusion diagrams for b̄-jets. Figure 6.2

shows two attempts to merge the two processes, on the left with the split occurring

at pcut
T = 20 GeV, and on the right with the split occurring at pcut

T = 10 GeV. The one

on the right was chosen because it provides a smooth distribution. As can be seen in

Refs. [167, 56], with this prescription, the distributions of the generated events match
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Figure 6.2: The pT and rapidity (y) distributions of the “third jet” b-quark.
The “soft” pp̄→ tq+bISR process is combined with the “hard” pp̄→ tq+bLO

with the split falling at pcut
T = 20 GeV (left) and pcut

T = 10 GeV (right). (Plots
from [56].)

those of NLO calculations.

SingleTop decays the top quarks and W bosons to ensure the spins are properly

treated. In our setup, tauola [169] decayed tau leptons and evtgen [170] decayed

b hadrons. pythia was used to add the underlying event and initial- and final-

state radiation. A top quark mass of 175GeV has been used for event generation

throughout this analysis. The CTEQ6L1 [20] pdf set was used, with the scales set to

m2
t for the s-channel and (mt/2)2 for the t-channel in order for there to be “maximum

closeness” of the LO cross section to the NLO cross section [167, 171].

For background modeling, we use three categories: W+jets, multijet, and tt̄. The

Z/γ∗+jets and diboson background is small, so by normalizing the W+jets back-

ground yield to data, as explained in Sec. 6.7, we implicitly add the Z/γ∗+jets and

diboson yield. It is expected that the discriminator output shape of this simplified
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scheme matches, within error, the shape it would have if we had explicitly modeled

the Z/γ∗+jets and diboson backgrounds.

The W+jets and tt̄ backgrounds are modeled by events generated using the alp-

gen Monte Carlo event generator [164], interfaced to pythia for the parton shower.

This version of alpgen includes a matching scheme, the MLM prescription, to match

parton showers with the matrix elements [172]. Since there is no factorization theorem

to separate the contributions of the hard process and the showering, the matching

scheme provides a way to not double-count any of the phase-space. The CTEQ6L1

pdf set was used, with the scales set to m2
W + p2

T (W ) for the W+jets sample and

m2
top +

∑

p2
T (jets) for the tt̄ sample.

For the W+jets we separately generated W +m light jets, W + cc̄+ n light jets,

and W + bb̄ + n light jets using alpgen, where m goes from zero to five and n goes

from zero to three. As required by the MLM matching routines, all the samples have

additional pythia jets removed, except for the W +5 light jets, W + cc̄+3 light jets,

and W + bb̄ + 3 light jets samples, to avoid double-counting the phase space. Also,

heavy flavor added by pythia was removed form the light jets sample. The Wcj

subprocesses, with massless charm quarks, are included in the W+light jets sample

because there was a bug in alpgen’s Wc subprocess at the time of generation

Table 6.1 shows the cross sections, branching ratio, initial numbers of events,

and corresponding integrated luminosities of the Monte Carlo samples. The tt̄ cross

sections are from Ref. [166], the single top cross sections are from Ref. [77], and

the W+jets cross sections, since they are not used in the analysis, are the values

calculated by alpgen. Wjj refers to W+light jets, and except for that sample, all

other samples correspond to much higher integrated luminosities than the data. The

single top and tt̄ samples are weighted to the integrated luminosity of our dataset
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using the cross sections and branching ratio listed in that table. The W+jets sample

yield is normalized to data, as is explained in Sec. 6.7. The relative weight between

W+heavy flavor and W+light flavor is not well known [173, 174], so we measure it

when we do b-tagging. That procedure is also explained in Sec. 6.7.

SM Cross Section Branching Number Int. Lum.
Event Type [pb] Ratio of Events [fb−1]

Signals

tb → e+jets 0.88 ± 0.14 0.1111 ± 0.0022 92,620 947

tb → µ+jets 0.88 ± 0.14 0.1111 ± 0.0022 122,346 1,251

tb → τ+jets 0.88 ± 0.14 0.1111 ± 0.0022 76,433 782

tqb → e+jets 1.98 ± 0.30 0.1111 ± 0.0022 130,068 591

tqb → µ+jets 1.98 ± 0.30 0.1111 ± 0.0022 137,824 626

tqb → τ+jets 1.98 ± 0.30 0.1111 ± 0.0022 117,079 532

Backgrounds

tt̄ → ℓ+jets 6.8 ± 1.2 0.4444 ± 0.0089 474,405 157

tt̄ → ℓℓ 6.8 ± 1.2 0.1111 ± 0.0022 468,126 620

Wbb̄ → ℓνbb 142 0.3333 ± 0.0066 1,335,146 28

Wcc̄ → ℓνcc 583 0.3333 ± 0.0066 1,522,767 8

Wjj → ℓνjj 18, 734 0.3333 ± 0.0066 8,201,446 1

Table 6.1: The cross sections, branching ratios, initial numbers of events,
and corresponding integrated luminosities of the Monte Carlo event samples.

All the Monte Carlo samples have been run through a geant-based simulator

of the detector called døgstar [175, 110], which simulated the response of the D0

detector. Next the events were processed by the program, døsim [176], which:

• overlays minimum bias events to model multiple interactions per bunch crossing,

• models calorimeter pileup from previous bunch crossings,

• models calorimeter noise,

• models SMT, CFT, and Muon system noise and inefficiencies.
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Finally, the events were processed through the same reconstruction algorithms as

data, which were discussed in Chapter 5.

Because there is no good MC description of QCD multijet events, that background

is modeled with data. An orthogonal sample created by reversing part of the lepton

identification requirement is used and properly scaled, as is explained in Sec. 6.7.

6.3 Data and Triggers

The data sample was collected between August 2002 and December 2005, correspond-

ing to approximately 0.9 fb−1 of good quality data. Given the signal event signature,

lepton+jet triggers were used to select events. Over this time period, there were many

versions of trigger conditions used. Tables 6.2 and 6.3 show the specific triggers used,

as well as the integrated luminosity collected with each trigger. Tables 6.4 and 6.5

show specifically what the various triggers require.

6.3.1 Electron Channel

For the electron channel, the triggers are calorimeter-based. At Level 1, there are

only two types of trigger terms used. The main one is CEM(1,x), where x is 10, 11,

or 12, which fires if there is a trigger tower in the calorimeter with electromagnetic

ET ≥ xGeV. Trigger versions v8–v11 also require CJT(2,5), which fires if there are

two or more trigger towers with total (electromagnetic+hadronic) ET ≥ 5 GeV. The

trigger tower that satisfies CEM(1,10) automatically satisfies half of CJT(2,5), so

only one additional trigger tower with ET ≥ 5 GeV is required.
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Integrated Luminosity [pb−1]

Trigger Version Trigger Name Delivered Recorded Good Quality

v8 EM15 2JT15 6 5 5

v9 EM15 2JT15 48 42 25

v10 EM15 2JT15 20 18 10

v11 EM15 2JT15 79 72 63

v12 E1 SHT15 2J20 273 251 227

v13.00–v13.23 E1 SHT15 2J J25 80 73 55

v13.30–v13.90 E1 SHT15 2J J30 354 325 294

v14 E1 SHT15 2J J25 290 271 234

Total Integrated Luminosity 1,150 1,056 913

Table 6.2: Triggers and integrated luminosities by trigger version for the
electron channel.

At Level 2, trigger versions v8–v11 require one calorimeter electron object, with

ET ≥ 10 GeV and fEM > 0.85. Those trigger versions also require two jet objects

with ET ≥ 10 GeV, though almost always the object that satisfies the electron part

of the Level 2 trigger satisfies half of the jet part, meaning that only one additional

jet is required. Trigger version v12 has no Level 2 requirement, and trigger version

v13 and v14 require one calorimeter electron object with ET ≥ 15 GeV.

At Level 3, there are two types of electron triggers used: ELE LOOSE SH T(1,15)

for trigger versions v8–v11, and ELE NLV SHT(1,15) for v12–v14. Both types re-

quire a Level 3 electron object with ET > 15 GeV and fEM > 0.85, and both make a

“tight” cut on the shower widths on the EM1, EM2, and EM3 floors of the calorime-

ter. However, ELE NLV SHT(1,15) uses rescaled widths when it cuts on the shower

shape [177]. The rescaling is a function of the values of ηdet and

φmod ≡ 32φ

2π
mod 1 (6.1)
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of the electron. The variable φmod is a measure of the location of the electron within

a calorimeter module so that effects from cell boundaries and cracks in the sensitive

region can be taken into account in the shower width. Furthermore, those filters

started making nonlinear corrections and using L3 event vertex to improve the ET

resolution and hence sharpen the turn-on. The jet part of the triggers, JET(1,x)

and JET(2,x), fire when there are one or more or two or more, respectively, Level 3

jets with ET > xGeV. For example, JET(1,25)JET(2,20) requires one jet to have

ET > 25 GeV and another, ET > 20 GeV, because the first jet also satisfies half of

the JET(2,20) requirement. Where it gets more complicated is that the electron, if

it has a high enough ET, may also be one of the “jets” mentioned above.

To simplify trigger modeling we explicitly make the requirement offline that the

reconstructed electron in our data set has fired the electron part of the triggers by

requiring ∆R(reco, trigger) < 0.4 at all levels, where ∆R =
√

(∆ηdet)2 + (∆φdet)2.

6.3.2 Muon Channel

For the muon channel, at Level 1, the triggers all require a muon and a calorimeter

trigger tower (jet). The calorimeter requirement is either CJT(1,3) or CJT(1,5),

namely, one or more trigger towers with total (electromagnetic+hadronic) ET ≥
3 GeV or ET ≥ 5 GeV, respectively. The muon part of the triggers are mu1ptxatxx

or mu1ptxatlx, and those refer to at least one muon (the “1” in the name) with:

• no L1CTT track match or pT requirement (“ptx”),

• in any region (“a”: all),

• a tight scintillator requirement (“t”)

• no requirement (“x”) or loose (“l”) wire chamber requirement,
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Integrated Luminosity [pb−1]

Trigger Version Trigger Name Delivered Recorded Good Quality

v8 MU JT20 L2M0 7 6 6

v9 MU JT20 L2M0 48 42 25

v10 MU JT20 L2M0 21 19 11

v11 MU JT20 L2M0 79 74 65

v12 MU JT25 L2M0 277 255 231

v13.00–v13.11 MUJ2 JT25 56 39 31

v13.20–v13.23 MUJ2 JT25 LM3 26 22 16

v13.30–v13.90 MUJ2 JT30 LM3 382 277 252

v14.00–v14.10 MUJ1 JT25 LM3 0 0 0

v14.20–v14.21 MUJ1 JT25 ILM3 25 23 21

v14.30–v14.90 MUJ1 JT35 LM3 265 248 214

Total Integrated Luminosity 1,187 1,006 871

Table 6.3: Triggers and integrated luminosities by trigger version for the
muon channel.

• and no optional requirement (the last “x”) [120].

At Level 2, all the triggers require a medium quality muon with no pT requirement.

Additionally, from trigger version v12, there has been a requirement for one or more

jets with ET ≥ 10 GeV (v12) or ET ≥ 8 GeV (v13, v14).

At Level 3, before trigger v13.30, there was simply a one or more jet require-

ment, with ET > 20 GeV or ET > 25 GeV. Starting with trigger version v13.30,

MUON(1,3,loose) was added, which requires one or more loose Level 3 muons with

pT > 3 GeV. The jet thresholds have had to increase to lower the trigger rates. For

trigger version v14.20 and v14.21, ISO MUON(1,3,loose) was also used at Level 3.

This filter requires one or more loose isolated muons with pT > 3 GeV. The isola-

tion is determined with respect to the transverse energy in the calorimeter in a cone

around the track, which has to be smaller that 8 GeV.



6.3.
D

ata
an

d
T
riggers

115

Trigger Name Level 1 Condition Level 2 Condition Level 3 Condition

EM15 2JT15 CEM(1,10)CJT(2,5) EM(0.85,10)JET(2,10) ELE LOOSE SH T(1,15) JET(2,15)

E1 SHT15 2J20 CEM(1,11) None ELE NLV SHT(1,15) JET(2,20)

E1 SHT15 2J J25 CEM(1,11) L2CALEM(15,x) ELE NLV SHT(1,15) JET(1,25)JET(2,20)

E1 SHT15 2J J30 CEM(1,11) L2CALEM(15,x) ELE NLV SHT(1,15) JET(1,30)JET(2,20)

E1 SHT15 2J J25 CEM(1,12) L2CALEM(15,x) ELE NLV SHT(1,15) JET(1,25)JET(2,20)

Table 6.4: Definitions of triggers used in the electron channel.

Trigger Name Level 1 Condition Level 2 Condition Level 3 Condition

MU JT20 L2M0 mu1ptxatxx CJT(1,5) MUON(1,med) JET(1,20)

MU JT25 L2M0 mu1ptxatxx CJT(1,3) MUON(1,med)JET(1,10) JET(1,25)

MUJ2 JT25 mu1ptxatxx CJT(1,5) MUON(1,med)JET(1,8) JET(1,25)

MUJ2 JT25 LM3 mu1ptxatlx CJT(1,5) MUON(1,med)JET(1,8) JET(1,25)MUON(1,3,loose)

MUJ2 JT30 LM3 mu1ptxatlx CJT(1,5) MUON(1,med)JET(1,8) JET(1,30)MUON(1,3,loose)

MUJ1 JT25 LM3 mu1ptxatlx CJT(1,5) MUON(1,med)JET(1,8) JET(1,25)MUON(1,3,loose)

MUJ1 JT25 ILM3 mu1ptxatlx CJT(1,5) MUON(1,med)JET(1,8) JET(1,25)MUON(1,3,loose)

ISO MUON(1,3,loose)

MUJ1 JT35 LM3 mu1ptxatlx CJT(1,5) MUON(1,med)JET(1,8) JET(1,35)MUON(1,3.,loose)

Table 6.5: Definitions of triggers used in the muon channel.



6.3. Data and Triggers 116

To simplify trigger modeling we explicitly make the requirement offline that the

reconstructed muon in our data set has fired the muon part of the triggers

6.3.3 Trigger Efficiencies

These lepton+jets triggers allows for a lower lepton threshold compared to single-

lepton triggers while still maintaining straightforward modeling. The average trigger

efficiency has been 87% for s-channel signal for both electron and muon channels, 86%

for t-channel signal in the electron channel, and 82% for t-channel signal in the muon

channel, The efficiencies were determined by modeling the triggers on MC events, to

be explained in Sec. 6.6. With increasing luminosity, the threshold for the jet has had

to be increased, particularly in the muon channel, thereby reducing the efficiency to

trigger on the signal. This effect is shown in Tables 6.6 and 6.7. Therefore, subsequent

versions of this analysis will be including more triggers in the future, in particular,

an “OR” of single lepton triggers and lepton+jet triggers.

Trigger Version s-channel t-channel

v8 92% 92%

v9 91% 91%

v10 91% 91%

v11 91% 91%

v12 86% 85%

v13.00–v13.23 87% 86%

v13.30–v13.90 86% 85%

v14 88% 87%

Overall average 87% 86%

Table 6.6: Average electron-channel trigger efficiencies for single top events
after selection.
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Trigger Version s-channel t-channel

v8 96% 94%

v9 93% 90%

v10 91% 88%

v11 92% 88%

v12 91% 88%

v13.00–v13.11 91% 87%

v13.20–v13.23 91% 87%

v13.30–v13.90 86% 81%

v14.00–v14.10 92% 89%

v14.20–v14.21 92% 89%

v14.30–v14.90 80% 72%

Overall average 87% 82%

Table 6.7: Average muon-channel trigger efficiencies for single top events
after selection.

6.4 Event Selection

The analysis strategy is to make the event selection cuts loose and then to depend

on the multivariate analysis to discriminate the signal from background. The idea is

that the multivariate techniques are more powerful than simple cuts, so they should

be allowed to do the most work. In addition, however, it is important to filter out

events that are difficult to model. The “triangle” cuts, explained below, provide an

example, since they are designed to remove poorly measured events.

The event selection common for both the electron and muon channels makes the

following requirements:

• Good quality (for data): the data quality must have been declared good for

tracking, calorimetry, and muon system, and there must not be excessive noise

in the calorimeter.
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• Pass trigger (for data): the event must have fired one of the triggers described in

Sec. 6.3. Additionally, offline electrons and muons in the data must be matched

to the lepton object at all three trigger levels that fired in the appropriate

trigger for that run period. This requirement allows better modeling of the

trigger behavior in Monte Carlo.

• Good primary vertex: |zPV| < 60 cm with at least three tracks attached, where

zPV is the z coordinate of the primary vertex.

• Missing transverse energy 15 < 6ET < 200 GeV. The upper criteria serves to

remove badly mismeasured (usually µ+jets) events.

• Two or three jets that pass standard jet ID requirements (see Sec. 5.4), each

with pT > 15 GeV and |ηdet| < 3.4. Also available for the other multivariate

techniques and for cross checks are events with one jet and with four jets,

though the ME analysis does not make use of these for extracting the single top

measurement.

• The leading jet is required to have pT > 25 GeV and |ηdet| < 2.5.

• The second leading jet is required to have pT > 20 GeV.

• There must be fewer than three jets in the event that fail the standard jet ID

requirements. This is an event quality cut to remove noisy events.

• Jet triangle cut: Events must have (∆φ(leading jet, 6ET), 6ET) fall below the line

that goes through the points (1.5 rad, 0 GeV) and (π rad, 35 GeV); see Fig. 6.3.

∆φ(leading jet, 6ET) is defined to be the (positive) angle between the leading jet

and 6ET. The regions being cut out are when the 6ET is opposite a jet, which

suggests that the 6ET is poorly measured because, for example, the jet’s energy

is poorly measured.
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Figure 6.3: The triangle cuts for jets, electrons, and muons. The cuts are
indicated by the diagonal lines in the left upper and lower corners. The
blue-green areas are where s-channel single top falls after applying the event
selection, including the 6ET and triangle cuts.
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The electron channel has, in addition to the common requirements, the following

specific selection cuts:

• Exactly one electron of quality top tight (see Sec. 5.5) with ET > 15 GeV and

|ηdet| < 1.1.

• Electron coming from the primary vertex: |∆z(e,PV)| < 1 cm.

• Second electron veto: No second electron of quality top loose with ET > 15 GeV

with any η. The purpose of this cut is to remove most of the Z/γ∗(→ e+e−)+jets

and tt̄→ e+e−+jets backgrounds.

• No tight muon with pT > 18 GeV and |ηdet| < 2.0. This requirement is mainly

to keep the electron and muon channels orthogonal, but it also functions to

remove the tt̄→ µe+jets (and a bit of Z/γ∗(→ τ+τ−)+jets) backgrounds.

• Electron triangle cuts: Events must have (∆φ(e, 6ET), 6ET) fall

– below the line that goes through the points (2 rad, 0 GeV) and (π rad, 24 GeV)

– above the line that goes through the points (2 rad, 0 GeV) and (0 rad, 40 GeV)

– above the line that goes through the points (1.5 rad, 0 GeV) and (0 rad, 50 GeV);

see Fig. 6.3. The regions being cut out are when the 6ET is opposite or along the

direction of the electron (in φ), which suggests that the 6ET is poorly measured.

The muon channel has, in addition to the common requirements, the following specific

selection cuts:

• Exactly one tight muon (see Sec. 5.6) with pT > 18 GeV and |ηdet| < 2.0.

This cut also removes most of the Z/γ∗(→ µ+µ−)+jets and tt̄ → µ+µ−+jets

backgrounds.
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• Muon coming from the primary vertex: |∆z(µ,PV)| < 1 cm.

• No electron of quality top tight with ET > 15 GeV and |ηdet| < 2.5. This is

mostly to keep the electron and muon channels orthogonal, but it also functions

to remove tt̄ → µe+jets (and a bit of Z/γ∗(→ τ+τ−)+jets) background.

• Muon triangle cuts: Events must have (∆φ(µ, 6ET), 6ET) fall

– below the line that goes through the points (2.5 rad, 0 GeV) and (π rad, 30 GeV)

– above the line that goes through the points (1.5 rad, 0 GeV) and (0 rad, 50 GeV)

– above the line that goes through the points (1.1 rad, 0 GeV) and (0 rad, 80 GeV);

see Fig. 6.3. The regions being cut out are when the 6ET is opposite or along the

direction of the muon (in φ), which suggests that the 6ET is poorly measured.

6.5 Correcting the Monte Carlo Model Efficiencies

and Resolutions

The Monte Carlo samples for single top, W+jets, and tt̄ have to pass the event

selection described above. However, the efficiency to reconstruct, identify, and select

electrons and muons in the MC is higher than in data, so correction factors are needed

to correct for these differences. For the leptons and jet, the energy resolution is better

for MC than for data, so the MC sample is further smeared. These corrections are

further explained below.
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6.5.1 Electron Corrections

We correct each MC event in the electron channel with a scale factor that accounts for

the differences in electron cluster finding and identification efficiency between data

and MC events. The correction factor is divided into two parts: preselection and

post-preselection. Preselection refers to the basic electron criteria that is common

among many electron quality definitions: ID, electromagnetic fraction, and isolation.

The corresponding scale factor is parametrized as a function of ηdet, and is shown in

Fig 6.4(a). The post-preselection criteria, which is unique for our particular electron

quality definition, consists of the H-matrix cut, the track matching requirements, and

the likelihood cut. The corresponding scale factor is parametrized as a function of

ηdet and φdet, and is shown in Fig 6.4(b). The overall correction factor thus becomes:

cfe−ID =
εData
Presel

εMC
Presel

× εData
PostPresel

εMC
PostPresel

These factors were derived from Z → e+e− data and simulated events using

a tag and probe technique, as described in more detail in Ref [144]. To measure

the preselection efficiency, events in data and Z → e+e− MC were selected to have

one tight electron that has fired a single-electron trigger (if data), the tag, plus an

isolated good quality track opposite of the electron, the probe. For the electron to

be considered tight it has to pass a tight H-matrix cut and a tight track match

(χ2
hm < 12, P (χ2

spatial) > 0.01), and the trigger requirement is to minimize trigger

biases in the measured quantity—the event will have been triggered on regardless

of the probe. The probe track had to be away from any muon, and the invariant

mass of the electron and the track had to be greater than 60 GeV. The efficiency

was calculated by determining the probability to construct an electron cluster where
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Figure 6.4: The (a) preselection and (b) post-preselection correction factors
for electrons.
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the probe track was pointing. The background subtraction was determined by using

cases where the tag electron track and the probe track have the same sign.

To measure the post-preselection efficiency, events in data and Z → e+e− MC

were selected to have two electrons, one being the tag, defined in this case to be of

top tight quality and to have fired a single-electron trigger (if data), and the other

being the probe. The probability to pass the H-matrix requirement given a preselected

electron was measured by taking a probe electron that passed preselection and seeing

how often it passed the H-matrix requirement. The probability to pass the track

requirement given a preselected electron that has passed the H-matrix was measured

by taking a probe electron that passed preselection and H-matrix and seeing how

often it passed the track matching requirement. The probability to pass the likelihood

given that it has passed preselection, H-matrix, and track matching was calculated

in an analogous manner. The post-preselection efficiency can then be determined

by putting these partial probabilities together. Background subtraction was done by

fitting a Voigt function plus exponential around the Z invariant mass peak. In all

cases, if both electrons were able to satisfy the tag requirement, each was separately

used as the tag.

The electron energies in the MC samples are smeared so that they match the

resolution of data. The smearing parameters were determined by making the invariant

mass of the two electrons from a Z → e+e− data and MC sample have the same

distribution.

6.5.2 Muon Corrections

We correct each MC event in the muon channel with a scale factor that accounts for

the differences in muon identification efficiency between data and MC events. The
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correction factor is divided into three parts: the muon type and quality, the global

track match, and the isolation. The muon type and quality refers to the |nseg| = 3

medium criteria, and the corresponding correction factor is parametrized as a function

of ηdet and φ. The correction factor for the medium quality global track match is

parametrized as a function of track-z and ηCFT. The isolation correction factor is a

function of η. The correction factors and their parametrizations have been derived

from Z → µ+µ− data and MC, as described in Ref. [150]:

cfµ−ID =
ε Data
MediumID

ε MC
MediumID

× ε Data
TrackMatch

ε MC
TrackMatch

×
ε Data
TightIsol

ε MC
TightIsol

The muon energies in the MC samples are also smeared to match the resolution

of the data. Because the solenoid current was reduced after the shutdown that took

place in 2005, the muon resolution became 15% worse. Therefore, there are different

smearing parameters for pre-shutdown and post-shutdown data. We smear the MC

samples to have the same pre-/post-shutdown ratio as the data.

6.5.3 Jet Corrections

MC jets do not need to have a correction factor applied to them, but they do need to

have their energy corrected and smeared. As for data jets, MC jets have a jet energy

scale applied to them. The energy then needs to be smeared [178], and only then can

the jet pT cuts can be applied to them.
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6.6 Modeling the Trigger for Monte Carlo Events

The trigger effects need to be modeled in MC events in order for them to accurately

represent data events. We do that by assigning a weight to each event based on how

likely it would be triggered [179, 180, 181]. The triggering efficiencies for the leptons

and jets are measured in data and parametrized. The individual object parametriza-

tions are then combined into a probability for each MC event that that particular

event would have been triggered.

The probability for an electron to fire a trigger was measured by a tag and probe

technique in the same way that the post-preslection efficiencies were measured. The

trigger efficiency that is needed is the probability for an electron to fire the electron

part of the trigger given that it has passed the selection requirement (i.e., be of

quality top tight). Data events were selected to have two top tight electrons, and

one, the tag, must have fired a single-electron trigger to minimize trigger biases. The

probability for the probe electron to fire the electron part of the electron+jet trigger

gives the desired efficiency. If both electrons satisfied the tag requirements, then

both were separately treated as the tag. The efficiency was fitted and parametrized

as a function of pT. Additionally, the electron can fire part of the jet trigger. This

is measured by seeing how often the probe electron fired the single-jet part of the

jet trigger given that it had fired the electron part of the trigger. For v8–v11, this

was found to be roughly 100%, so it is taken to be 100% for those trigger versions

with no further parametrization. However, from v12 on, the jet part of the trigger

had a higher ET threshold than the electron part, so the efficiency was fitted and

parametrized as a function of the electron pT. Figure 6.5 shows the trigger turn-on

curves for electrons to fire the electron part and the jet part of E1 SHT15 2J J30,

which has the highest integrated luminosity of all the e+jets triggers we used.
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Figure 6.5: The trigger turn-on curves for electrons to fire the electron part
(left) and the jet part (right) of E1 SHT15 2J J30.

The muon trigger efficiency was similarly measured and parametrized using Z →
µ+µ− events, this time as a function of ηdet and φ. The jet trigger efficiencies were

calculated using a sample of muon-triggered jet events. The trigger efficiencies were

calculated by seeing how often there were matching trigger objects to jets that passed

the offline reconstruction values. The efficiency was parametrized in pT and ηdet.

6.7 Normalizing the W+jets and Multijets Back-

grounds to Data

The amount of fake lepton background in our selected data samples can be estimated

using the matrix method (MM) [182], which proceeds as follows. Two data samples

are defined, one with a loose lepton requirement, and one with a tight lepton require-

ment. The definition of the tight requirement must be such that all tight leptons

are also loose leptons. We need to externally have an estimate of the incremental

efficiency for loose leptons to pass the tight lepton requirement, which we label εreal.

This efficiency does not need to be a constant; it can be a function of the lepton
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variables, such as pT and η, and also event variables, like instantaneous luminosity.

We also similarly need to externally have an estimate of the fake rate, that is, the

efficiency for fake leptons that pass the loose quality to also pass the tight quality.

This fake rate is labeled as εfake.

Defining Nloose to be the number of events that fulfill the loose lepton criteria and

Ntight the number that fulfill the tight criteria, the number of real and fake leptons in

the loose sample, N real
loose and N fake

loose, can be determined by solving this system of two

equations and two unknowns:

Nloose = N real
loose +N fake

loose

Ntight = εrealN real
loose + εfakeN fake

loose (6.2)

Because the lepton efficiency and fake rate are a function of the event variables,

logically we can think of solving the system of equations separately in different bins

defined such that within a bin the ε values are constant. Then the number of real

and fake electron events in the tight sample in bin i can be estimated as N real
tight i =

εreal
i N real

loose i and N fake
tight i = εfake

i N fake
loose i, and the estimates of the total number of real

and fake leptons in the tight sample can be estimated as N real
tight =

∑

iN
real
tight i and

N fake
tight =

∑

iN
fake
tight i.

In the electron channel the loose electron quality criteria is top loose, and the tight

is top tight. The tight sample is the sample that passes all the criteria in Sec. 6.4,

while the loose sample changes the “exactly one electron of quality top tight with

ET > 15 GeV and |ηdet| < 1.1” criteria to “exactly one electron of quality top loose

with ET > 15 GeV and |ηdet| < 1.1.” For muons the loose and tight criteria are

defined in Sec. 5.6. Similarly to the electron case, the tight sample is is the sample

that passes all the criteria in Sec. 6.4, while the loose sample changes the “exactly
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one tight muon with pT > 18 GeV and |ηdet| < 2.0” to “exactly one loose muon with

pT > 18 GeV and |ηdet| < 2.0.”

The real electron efficiency is calculated as

εreal = εreal
MC × εreal

Z→e+e− data

εreal
Z→e+e− MC

. (6.3)

The εreal
MC variable is the real electron efficiency measured in our MC samples scaled

according to their approximate proportions in the loose sample (which is similar to the

proportions in the tight sample, given in Table 6.10). MC truth is used to measure this

efficiency. The term on the right is the incremental likelihood1 data/MC correction

factor, as explained in Sec. 6.5.1. The only difference is that the correction factors,

since they are applied on MC before the trigger model, need to be as free from

trigger biases as possible. On the other hand, we apply the MM to triggered data,

so we want ε to model the performance of triggered data. Therefore, when doing

tag and probe in data, the probe electron is required to match an electron in the

trigger system. The difference is measurable but only around 1% for εreal, which is

smaller than the systematic uncertainties associated with the method. The difference

is more significant for εfake, however. We parameterize εreal in the electron channel

as a function of pT and ηdet, and one-dimensional projections of the two-dimenisonal

parametrization that we use are given in Fig. 6.6.

The muon efficiencies are measured using tag and probe with Z→µ+µ− events.

We parameterize εreal in the muon channel as a function of pT and the number of jets

in the event, and one-dimensional projections of the this parametrization are given

in Fig. 6.7.

The lepton fake rates are calculated using our loose data sample but with 6ET <

1The difference between top loose and top tight is that top tight has a L > 0.85 cut.
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Figure 6.6: One-dimensional projections in pT and ηdet of the electron effi-
ciencies used in the matrix method.

Figure 6.7: One-dimensional projections in pT and number of jets of the
muon efficiencies used in the matrix method.
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No. jets v8–v11 v12 v13.0–v13.11 v13.20–v13.90 v14

1 (11.2 ± 0.5)% (17.9 ± 0.6)% (18.7 ± 1.2)% (19.1 ± 0.6)% (18.5 ± 0.6)%

2 (12.8 ± 1.0)% (19.2 ± 1.0)% (18.8 ± 2.2)% (19.4 ± 1.1)% (22.0 ± 1.2)%

3 (13.6 ± 1.5)% (19.5 ± 1.6)% (19.8 ± 3.4)% (19.2 ± 1.6)% (19.4 ± 1.7)%

4 (10.0 ± 2.8)% (15.5 ± 2.9)% (20.9 ± 8.6)% (17.7 ± 3.3)% (20.7 ± 3.7)%

Table 6.8: The electron fake rates used in the matrix method as a function
of trigger version and number of jets.

10 GeV instead of 6ET > 15 GeV. The low 6ET region is dominated by multijet back-

ground, and it is assumed that the fake rate is independent of the 6ET of the event.

The lepton fake rates are determined by seeing what fraction of the loose leptons in

the above samples fulfill the tight lepton criteria.

Our study of the electron fake rate found no dependence on the lepton pT or

lepton η, but dependence on the trigger version and jet multiplicity. As mentioned in

Sec. 6.3, the Level 3 shower shape requirement became significantly tighter starting

with trigger version v12, making the electrons that are triggered look much more like

real electrons. Therefore, the incremental fake rate for the likelihood requirement

became higher (though the total fake rate is smaller). A summary of the results is

presented in Table 6.8.

For the muon fake rate, we performed a similar set of studies and found no need

to parametrize as a function of the trigger version, but we did find a small dependence

on the muon ηdet. Although there is also a dependence on the muon pT, parametrizing

on that variable did not change the overall results. Therefore, the muon fake rate is

parametrized as a function of ηdet and the number of jets in the event, as shown in

Fig. 6.8.

The number of events in the loose and tights samples, as well as the resulting

estimates of the number of real and fake lepton events, are given in Table 6.9. The
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Figure 6.8: The muon fake rates used in the matrix method as a function of
ηdet and number of jets.

Electron Channel Muon Channel

2 jets 3 jets 2 jets 3 jets

Nloose 15,213 7,118 7,092 3,054

Ntight 8,220 3,075 6,432 2,590

N real
tight 6,787 2,215 6,105 2,369

N fake
tight 1,433 860 329 223

Table 6.9: The number of events in the loose and tight samples that are given
as input to the matrix method, and the resulting estimates for the number
of real and fake lepton events in the tight sample..

MM is run separately for each jet bin of the electron and muon channels. To model

the multijet background, in each jet bin we take the loose sample and subtract out the

tight sample, thus creating a sample orthogonal to the tight sample. This orthogonal

sample, scaled to N fake
tight in each bin, becomes our multijet background model. This

sample has a small W + jets contamination, but because the contamination is within

the uncertainties we apply to the model, we do not correct for it.
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We scale the W+jets sample in each channel so that

NW+jets = N real
tight −Ntt̄ (6.4)

where Ntt̄ is normalized using the cross section given in Table 6.1. The relative frac-

tion of heavy flavor production W+heavy flavor to W+light jets ratio is determined

as follows. Let

NW+jets = wMM

[

NALPGEN
W+light jets + α

(

NALPGEN
Wbb̄ +NALPGEN

Wcc̄

)]

(6.5)

where the NALPGEN counts are the unscaled yields using the alpgen cross sections,

wMM is the matrix method weight needed to make NW+jets agree with the value set in

Eq. 6.4, and α is an extra scaling factor given to the W+heavy flavor samples. Wbb̄

and Wcc̄ are scaled by the same factor.

Up to this point we have not applied b-tagging to the data, and the yields are

made to exactly match the data by the MM. We can choose different values for α in

Eq. 6.5 and if we compensate with wMM, we can still satisfy Eq. 6.4. We can select

the combination of α and wMM only with more input points, and for that, we apply

b-tagging to the data (directly) and MC (using TRFs), to be explained in Sec. 6.8. We

use the zero-tagged data set yields, where the signal content is negligible, to determine

the heavy flavor fraction. The zero-tagged data set is not used elsewhere within the

analysis. We scale the heavy flavor fraction (and adjust wMM to keep Eq. 6.4 satisfied)

so that the yields match in the zero-tagged channel, and the measured α is shown in

Fig. 6.9. We take α = 1.5 and assign a 30% uncertainty.
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Figure 6.9: The values of α in the zero-tag sample for electron and muon
channel in each jet multiplicity.

6.8 b-Tagging

Fig. 6.1 strongly makes the case for the benefits of b-tagging to the single-top analysis.

In the two-jet bin for s-channel production, requiring one b-tag changes the signal to

background ration from 1:1600 to 1:55, and two b-tags makes it even purer, 1:12,

though with a smaller yield. Similarly in the two-jet bin for t-channel production,

requiring one b-tag changes the signal to background ration from 1:520 to 1:32. We

therefore require for events to enter our analysis that they have one or two b-tags.

We use the NN b-tagging algorithm at the TIGHT operating point [158, 159]. We

apply the tagger to data, but we apply a tag-rate function (TRF) to the MC, which

is a parametrization of the b-tagging performance, taking into account the jet flavor

and jet variables. Applying the tagger directly to the MC results in too high of a

b-tag efficiency prediction. The steps are explained in more detail below.
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6.8.1 Taggability

For data events, before applying the b-tagging algorithm, we first determine whether

the jet is taggable, which is a criteria independent of the particular b-tagging algo-

rithm2. The specific criteria is that the (calorimeter) jet is required to be within

∆R < 0.5 to a track-jet, as defined in Sec. 5.8. It is clearly a requirement for the

tracking-based b-tagging algorithms to be able to associate a set of tracks with a jet.

For MC events, we do not apply the criteria directly but instead apply a taggabil-

ity rate function, which is a parametrization of the efficiency for a jet to be taggable,

parametrized as a function of jet pT, jet η and the primary vertex z. The taggability

rate functions have been derived on the loose data samples, as defined for the matrix

method, to keep enough statistics for the measurement. The result of applying the

functions to the tight samples are given in Fig. 6.10 for the electron channel and in

Fig. 6.11 for the muon channel. The observed and predicted results agree within the

uncertainty.

6.8.2 b-Tagging

After applying the taggability criteria, the next step is to apply the actual b-tagging.

For data, we run the b-tagging algorithm. For MC, we apply a flavor-dependent

parametrized function that gives the probability that an event is tagged.

The procedure to calculate the TRF is as follows. In a heavily b-enriched data

sample, with one jet tagged with the JLIP requirement, and the probe jet containing

a muon within it (for SLT tagging), we apply the NN tagger on the probe jet to

determine the semileptonic data tagging efficiency, εDATA
b→µ . In an admixture of Z → bb̄

2This considers only lifetime-based tagging, not SLT.
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Figure 6.10: The ratio of the predicted taggability rate function over the
observed taggability on the electron channel tight data sample.
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Figure 6.11: The ratio of the predicted taggability rate function over the
observed taggability on the muon channel tight data sample.



6.8. b-Tagging 138

and tt̄ MC events we determine εMC
b→µ, in order to calculate the data/MC scale factor:

SFb =
εDATA

b→µ

εMC
b→µ

. (6.6)

We assume that this scale factor is unchanged for b-jets without a muon and also for

c-jets. Therefore,

εb = εMC
b × SFb (6.7)

εc = εMC
c × SFb. (6.8)

The MC samples used for the εMC
c calculation were Z → cc̄, tt̄, and QCD samples.

The measured εb and εc dependences are shown in Fig. 6.12 together with the direct

tagger efficiency.

The probability to tag a light jet, εlight, is calculated using the concept of a

negative tag. In Sec. 5.8, it was mentioned how CSIP has a signed impact parameter

significance and how SVT has a signed decay length significance. Real b-quarks are

expected to have a positive significance, because, taking SVT as an example, the b-jet

is on the side of the SV, not opposite it. When the SV is opposite of the jet, then

the notion is that the SV is a result of mismeasurement. Since light quarks are not

supposed to have a SV, the sign of the significance should average to zero. Therefore,

εlight can be determined by measuring the negative tag rate, ε−data, in data and EM

skims.

The probability so derived needs to be corrected, however, for the presence of
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Figure 6.12: NN TIGHT tagger b-jet (upper row) and c-jet (lower row) effi-
ciencies as a function of pT (left column) and η (right column) in the inclusive
b and c MC samples. The corresponding data tag-rate functions (εb and εc)
are also displayed.
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b-quarks and c-quarks in the samples, as follows:

εlight = ε−data × SFhf × SFll (6.9)

SFhf = ε−QCD light/ε
−
QCD all (6.10)

SFll = ε+
QCD light/ε

−
QCD light, (6.11)

where the two scale factors are derived in MC. The scale factor, SFhf , which is

the number of negative tagged jets from light quarks divided by the total number of

negative tagged jets in the QCD MC, serves to correct for heavy flavor contamination.

The second scale factor, SFll, is to correct for long-lived hadron decays in light-quark

jets, and it is defined as the number of positive tagged jets from light quarks divide

by the number of negative tagged jets from light quarks in the QCD MC.

6.8.3 b-Tagging Event Weights and b-Jet Assignment Com-

binations

Given the three different efficiencies εα outlined above for α = b, c and light jets, the

probability to tag a jet of flavor α, can be expressed as the product of the taggability

and the tagging efficiency:

Pα(pT, η) = P taggable(pT, η) × εα(pT, η) (6.12)

Using the per jet probability, we can deduce the probability for an event to contain a

given combination of tagged and untagged jets. When working with our MC samples,

we permute over all these combinations, assigning the jets as tagged or untagged

based on the particular combination, and give each particular permutation a b-tagging
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weight based on the probability to have that combination. Thus, each MC event enters

our analysis numerous times.

6.9 Event Yields

Tables 6.10, 6.11, 6.12, and 6.13 show the signal and background yields for before

b-tagging, with zero b-tags, with one b-tagged jet, and with two b-tagged jets.

6.10 Cross Checks of the Background Model

Figure 6.13 show the distributions of W transverse mass, defined as

MWT =
√

(pℓ
T + 6ET)2 − (pℓ

x + 6Ex)2 − (pℓ
y + 6Ey)2, (6.13)

separately for each lepton flavor and jet multiplicity, after the matrix method has

been applied. More cross-check plots after selection before b-tagging, with one b-tag,

and with two b-tags are given in Appendix B. Good agreement between data and the

background model is seen everywhere.
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Electron Channel Muon Channel

1 jet 2 jets 3 jets 4 jets ≥ 5 jets 1 jet 2 jets 3 jets 4 jets ≥ 5 jets

Signals

tb 4 14 7 2 0 3 10 5 1 0

tqb 9 27 14 5 1 6 20 11 3 1

Backgrounds

tt̄→ll 9 35 28 10 4 5 27 22 8 3

tt̄→l+jets 2 26 103 128 67 1 14 71 99 43

Wbb̄ 659 358 149 42 5 431 312 161 47 10

Wcc̄ 1,592 931 389 93 10 1,405 1,028 523 131 21

Wjj 23,417 5,437 1,546 343 51 15,476 4,723 1,591 385 85

Multijets 1,691 1,433 860 256 86 498 329 223 58 10

Background Sum 27,370 8,220 3,075 874 223 17,816 6,434 2,592 727 172

Data 27,370 8,220 3,075 874 223 17,816 6,432 2,590 727 173

Table 6.10: Yields after selection and before b tagging.
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Electron Channel Muon Channel

1 jet 2 jets 3 jets 4 jets ≥ 5 jets 1 jet 2 jets 3 jets 4 jets ≥ 5 jets

Signals

tb 3 5 2 1 0 1 4 2 1 0

tqb 6 16 7 2 1 4 11 6 2 0

Backgrounds

tt̄→ll 5 14 11 4 1 3 10 8 3 1

tt̄→l+jets 2 13 43 47 24 1 7 28 35 15

Wbb̄ 471 222 92 27 3 300 187 97 28 6

Wcc̄ 1,511 856 352 84 9 1,341 953 475 117 19

Wjj 23,242 5,376 1,526 338 50 15,351 4,665 1,569 379 84

Multijets 1,655 1,365 808 236 78 481 302 198 49 7

Background Sum 26,886 7,845 2,832 735 165 17,476 6,124 2,375 610 131

Data 26,925 7,833 2,831 752 178 17,527 6,122 2,378 599 125

Table 6.11: Yields after selection for events with no b-tagged jets.
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Electron Channel Muon Channel

1 jet 2 jets 3 jets 4 jets ≥ 5 jets 1 jet 2 jets 3 jets 4 jets ≥ 5 jets

Signals

tb 2 7 3 1 0 1 5 2 1 0

tqb 3 11 6 2 1 2 9 5 2 0

Backgrounds

tt̄→ll 4 16 13 5 2 2 13 10 4 1

tt̄→l+jets 1 11 47 58 30 0 6 32 45 20

Wbb̄ 188 120 50 14 2 131 110 56 16 4

Wcc̄ 81 74 36 9 1 64 74 46 13 2

Wjj 175 61 20 5 1 125 58 23 6 2

Multijets 36 66 48 18 7 17 26 24 8 2

Background Sum 484 348 213 110 43 340 286 191 93 30

Data 445 357 207 97 35 289 287 179 100 38

Table 6.12: Yields after selection for events with exactly one b-tagged jet.
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Electron Channel Muon Channel

1 jet 2 jets 3 jets 4 jets ≥ 5 jets 1 jet 2 jets 3 jets 4 jets ≥ 5 jets

Signals

tb — 2.3 1.1 0.3 0.1 — 1.9 0.9 0.3 0.1

tqb — 0.3 0.8 0.4 0.2 — 0.2 0.7 0.4 0.1

Backgrounds

tt̄→ll — 5.5 4.6 1.7 0.7 — 4.6 3.8 1.4 0.5

tt̄→l+jets — 1.7 13.6 21.8 11.7 — 1.0 10.2 18.0 8.1

Wbb̄ — 16.2 6.8 1.8 0.3 — 15.3 8.2 2.3 0.6

Wcc̄ — 1.6 1.1 0.4 0.1 — 1.6 1.5 0.5 0.1

Wjj — 0.1 0.1 0.0 0.0 — 0.1 0.1 0.0 0.0

Multijets — 2.5 3.2 2.7 1.4 — 1.5 1.9 0.4 0.8

Background Sum — 27.5 29.4 28.4 14.2 — 24.1 25.7 22.7 10.1

Data — 30 37 22 10 — 23 32 27 10

Table 6.13: Yields after selection for events with exactly two b-tagged jets.
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Figure 6.13: The W transverse mass distribution for one, two, three, and
four jets events in the electron channel (left column) and in the muon channel
(right column).
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Chapter 7

The Analysis: Matrix Element

Technique

The central idea behind the matrix element (ME) technique is that the physics of a

collision is contained in the matrix element:

dσ =
|M|2
F

dΦ (7.1)

where dσ is the differential cross section, F is the flux factor, M is the matrix element,

and dΦ is the Lorentz invariant phase space factor. All the correlations between

the observables are contained in this equation. Therefore, instead of using machine

learning methods to infer the correlations from the data, the way a neural network

(NN) or decision tree (DT) would, it would be preferable to build a discriminant that

directly uses the information contained in Eq. 7.1. That is what the ME method

does. The main advantage of the ME method is therefore that it maximally uses the

information contained in the physics of the problem, without trying to infer it from
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the distributions. Furthermore, since it uses the information from first principles, not

from training, the ME method is not susceptible to the overtraining problem of the

other methods. It will not be led astray by peculiarities of the MC sample.

Of course, reality diminishes the discriminant power somewhat. The ME analysis

does not use the full matrix elements of the processes, but LO approximations. Nor

does the analysis include matrix elements for all possible background processes. Nev-

ertheless, the ME method remains arguably the most powerful and well motivated

method for discriminating signal from background.

The ME method has been used at D0 and CDF in the past for parameter esti-

mation such as the top quark mass [183, 184, 185, 186, 187, 188] or the longitudinal

W boson helicity fraction in top quark decays [189]. However, along with an analogous

analysis at CDF [190], this is the first use for a search for single top production.

7.1 Matrix Element Technique Overview

The matrix element method uses the matrix elements of a process to calculate the

probability to observe a particular event assuming that it is the given process. The

key equation is:

P (x|processi) =
1

σi

dσi

dx
(7.2)

where x is the configuration of the event, and P (x|processi) is the probability density

to observe x given that the physics process is processi. More concretely, x is the set

of reconstructed jet and lepton four-vectors, and possibly other information such as

b-tagging state, of the event. For each event, we can calculate P (x|signal), which uses

the matrix elements of the signal processes, and P (x|background), which uses the

matrix elements of the background processes. Bayes’s Theorem allows us to invert
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the relation:

P (signal|x) =
P (x|signal)P (signal)

P (x|signal)P (signal) + P (x|background)P (background)
(7.3)

Providing what is needed to separate signal from background: the probability that

the event is signal given the event’s configuration. Actually, the analysis uses a

discriminant D(x) defined by a related equation that contains the same information:

D(x) =
P (x|signal)

P (x|signal) + P (x|background)
. (7.4)

For each event in each channel, two discriminant values are calculated: a t-channel

discriminant and an s-channel discriminant. These discriminant values are plotted in

a two-dimensional histogram, which is provided as input to top statistics [191],

a program that applies systematic errors and extracts the result using a Bayesian

approach, as discussed in the next chapter.

7.2 Calculation of the Event Probability Density

Functions

The event configuration, x, which was discussed above, refers to the reconstructed

event configuration. However, the matrix element, M, depends on the parton-level

configuration of the event, which we label y. The differential cross section, dσ/dx,

can be related to the parton-level variant, dσ/dy, by integrating over all the possible

parton values, using the parton distribution functions to relate the initial state partons

to the proton and antiproton, and using a “transfer function” to relate the outgoing
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partons to the reconstructed objects. The relevant expression is:

dσ

dx
=
∑

j

∫

dy

[

f1,j(q1, Q
2) f2,j(q2, Q

2)
dσhs,j

dy
Wj(x, y) Θparton(y)

]

(7.5)

where

• ∑
j

is a sum of different configurations that contribute to the differential cross

section: it is the discrete analogue to
∫

dy. Specifically, this sum includes

summing over the initial parton flavors in the hard scatter collision and the

different permutations of assigning jets to partons. With regards to the initial

parton flavors, for example, an s-channel collision can occur via ud̄, d̄u, cs̄,

and s̄c annihilation, where the first element of the pair is associated with the

proton and the second with the antiproton. The differential cross section is the

sum over those configurations. The CKM matrix is taken to be diagonal when

choosing which pairs to sum.

•
∫

dy is an integration over the phase space:

∫

dy =

∫

dq1dq2d
3pℓd

3pνd
3pq1

d3pq2
. . . . (7.6)

Many of these integrations are reduced by delta functions. Energy and momen-

tum conservation removes 4 degrees of freedom, and as an approximation we

take the angular part of the per-object transfer functions to be delta functions,

removing 6 degrees of freedom in two-jet events and 8 for three-jet events. More

details are given in Section 7.5.

• fn,j(q, Q
2) is the parton distribution function in the proton or antiproton (n =

1 or 2, respectively) for the initial state parton associated with configuration j,
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Process Category Factorization Scale

s-channel single top m2
top

t-channel single top (mtop/2)2

W + jets m2
W + p2

T W

tt̄ m2
top +

∑

jets p
2
T i

Table 7.1: The factorization scales, Q2, used by the various categories of
processes. The factorization scales were chosen to be the same as those used
for the Monte Carlo generation.

carrying momentum q, evaluated at the factorization scale Q2. We use the same

factorization scales as used for the Monte Carlo generation, which are given in

Table 7.1. This analysis uses CTEQ6L1 [20] leading-order parton distribution

functions via LHAPDF [192].

• dσhs/dy is the differential cross section for the hard scatter collision. It is

proportional to the square of the leading order matrix element as given by

(cf. Eq: 7.1):

dσhs,j =
(2π)4

4
√

(q1 · q2)2 −m2
1m

2
2

|M|2dΦ (7.7)

where q and m are the four-momenta and masses of the initial state partons.

The matrix elements are discussed in more detail in Section 7.4.

• Wj(x, y), which can also be written as W (x | y, j), is called the transfer function,

and represents the conditional probability to observe configuration x in the

detector given the original parton configuration (y, j). The transfer function is

divided into two parts:

W (x | y, j) = Wperm(x | y, j) Wreco(x | y, j) (7.8)
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where Wperm(x | y, j) is the weight assigned to the given jet-to-parton permu-

tation, and Wreco(x | y, j) relates the reconstructed value to parton values for

a given permutation. Permutation weights are discussed in Sec. 7.6. More

information about Wreco is provided in Sec. 7.7.

• Θparton(y) represents the parton level cuts applied in order to avoid singulari-

ties in the matrix element evaluation. No parton-level cuts were applied when

integrating over tt̄ matrix elements. For all others, there was a pseudorapid-

ity cut for each parton: |η| < 8.0. For the t-channel matrix elements, and for

Wcg, Wgg, Wcgg, and Wcgg matrix elements, an additional quark and gluon

transverse momentum cut of pT > 2.0 GeV was required.

7.3 Normalization of the Probabilities

The probability to observe a particular event given a process hypothesis, Eq. 7.2, also

requires the total cross section (× branching ratio) as a normalization. Logically, the

total cross section (σ) is just an integration of Eq. 7.5:

σ =

∫

dx
dσ

dx
Θreco(x). (7.9)

The term, Θreco(x), approximates the selection cuts. While conceptually simple,

Eq. 7.9 represents a huge integral: 13 dimensions for two-jet events, 17 dimensions

for three-jet events other than tt̄, and 20 dimensions for tt̄. However, this integral

needs to be calculated only once, not once per event, so the actual integration time

is insignificant. Also, the values are not very important because any error just be-

comes a multiplicative factor to the true probability, and the discriminating power of

the discriminant remains unchanged, though perhaps the optimal binning or weights
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would be affected. That same argument is used to say that P (signal|x) and D(x),

Eq. 7.3 and Eq. 7.4, have the same discriminating power.

7.4 The Matrix Elements

The matrix elements used in this analysis are listed in Table 7.2. The code to cal-

culated the matrix elements is taken from the Madgraph [193] LO matrix-element

generator and uses the HELAS [194] routines to evaluate the diagrams. In the ta-

ble, for the single top processes, the top quark is understood to decay leptonically:

t → ℓ+νb, and for the W + jets processes, the W boson is also understood to decay

leptonically: W+ → ℓ+ν. The charge conjugate processes are also used. The same

matrix elements are used for both the electron and muon channels. Furthermore, we

use the same matrix elements for heavier generations of incoming quarks, assuming

a diagonal CKM matrix. In other words, for the tb̄ process, we use the same matrix

element for ud̄ and cs̄ initial state partons.

New to the analysis after the result published in Ref. [91] is an optimization of

the third jet bin. In the third jet bin, a significant fraction of the background is

tt̄ → ℓ + jets, as can be seen from the yield tables or more directly, the observed

results in Ref. [162]. Adding a matrix element for that process was what motivated

this iteration of the analysis. While no new processes were added to the two jet bin,

in the three jet bin, tqg, Wcgg, Wggg, and lepjets are all new to this analysis.
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Two Jets Three Jets

Name Process Name Process

Signals Signals

tb ud̄→ tb̄ (1) tbg ud̄→ tb̄g (5)

tq ub→ td (1) tqg ub→ tdg (5)

d̄b→ tū (1) d̄b→ tūg (5)

tqb ug → tdb̄ (4)

d̄g → tūb̄ (4)

Backgrounds Backgrounds

Wbb ud̄→ Wbb̄ (2) Wbbg ud̄→ Wbb̄g (12)

Wcg s̄g → Wc̄g (8) Wcgg s̄g → Wc̄gg (54)

Wgg ud̄→ Wgg (8) Wggg ud̄→ Wggg (54)

lepjets qq̄ → tt̄→ ℓ+νbūdb̄ (3)

gg → tt̄→ ℓ+νbūdb̄ (3)

Table 7.2: The Matrix Elements used in the analysis. The number in paren-
theses specifies the number of Feynman diagrams included in the process.
For simplicity, only the processes that contain a positively-charged lepton in
the final state are shown. The charge conjugated processes are also used.
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7.5 Integration Details

As shown in Sec. 7.2, the integration for the differential cross section, dσ/dx consists

of an integration over:

∫

dy =

∫

dq1dq2d
3pℓd

3pνd
3pq1

d3pq2
. . . (7.10)

where the ellipsis represents the integration over any extra quarks or gluons. Energy

and momentum conservation can be used to collapse the d3pν integration and one of

the two degrees of freedom associated with dq1dq2, the initial state parton momenta,

to get:
∫

dy =

∫

dpzd
3pℓd

3pq1
d3pq2

. . . , (7.11)

where dpz is an integration over the total pz of the hard scatter. Changing to polar

integration:
∫

dy =

∫

dpzd|pℓ|dΩℓd|pq1
|dΩq1

d|pq2
|dΩq2

. . . , (7.12)

where the Jacobian, |pℓ|2|pq1
|2|pq2

|2 . . ., has been omitted. This description omits all

Jacobians, though they were of course included in the calculation.

The analysis program uses the VEGAS Monte Carlo integration algorithm [195],

as implemented in the GNU Scientific Library [196]. That algorithm converges more

quickly if it can find the areas that contribute significantly to the integral. This fact

motivates the changes of variables for the various matrix elements, discussed in the

following subsections.
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7.5.1 Single Top, W+jets

For the single top and W + jets matrix elements, we assume one-to-one matching of

parton to reconstructed object. As an approximation the angular part of the transfer

functions is assumed to be a delta function (see Eqs. 7.26, 7.28 and 7.32), collapsing

the dΩ integrations:
∫

dy =

∫

dpzd|pℓ|d|pq1
|d|pq2

| . . . . (7.13)

Thus, in the end, the integrations are over four dimensions for two-jet events and over

five dimensions for three-jet events.

To speed up the integration we change the variables to integrate over the res-

onances, and we use a Briet-Wigner random number distribution to generate the

samples inside the peaks. Specifically, instead of integrating over d|pℓ|, the program

integrates over dm2
ℓν , and the random numbers used to evaluate that integral have a

Breit-Wigner distribution. For the single top processes, there is a similar top quark

resonance that is treated in the same way. In summary, the integration becomes:

∫

dy =

∫

dpzdm
2
ℓνd|pq1

|d|pq2
| . . . (W + jets) (7.14)

∫

dy =

∫

dpzdm
2
ℓνdm

2
ℓνbd|pq2

| . . . (singletop). (7.15)

7.5.2 tt̄→ℓ+jets

For the tt̄→ℓ+jets integration, we can no longer assume a one-to-one matching of par-

ton to reconstructed object. The final state has four quarks, so one-to-one matching

would lead to a four-jet event. In two-jet events, tt̄ is not a significant problem, so this

analysis does not use any tt̄ matrix elements in the two-jet bin. We are interested,

however, in using the lepjets matrix element in the three-jet bin because that bin
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contains significant tt̄ background. The tt̄ events therefore have to “lose” one jet to

enter this bin. One way that this jet could be lost is because the reconstructed pT of

the jet is below our cutoff. The pT cuts for jets, as explained in Sec. 6.4, are 25GeV

for the leading jet, 20GeV for the second leading jet, and 15GeV for subsequent jets.

A tt̄→ℓ+jets event that has a fourth jet with pT = 13 GeV, for example, would con-

sider the fourth jet lost. Another way to lose a jet is to merge it with another nearby

object. Overlapping a jet with an electron would probably kill the electron, but two

jets could be merged to bring the jet count down to three. The jet could also be

outside the η acceptance of the analysis, which is
∣

∣ηdet
∣

∣ < 3.4. There is also general

reconstruction inefficiency that could cause a jet to be lost, but the probability for

that is small: a few percent [139].

We studied tt̄→e+jets Monte Carlo events before tagging and found that for 80%

of the time when a jet was lost, there was no jet that passed the selection cuts within

∆R < 0.5 of the corresponding parton. Thus, the jet was not merged with another

jet but was lost some other way. Fig. 7.1 shows the pT and η distribution of quarks

not matched to a jet passing the selection cuts. The low pT of the quark suggests that

the jet is often lost because it falls below the jet pT threshold. Looking at the quark

flavor of lost jets, the study showed that the light quark jets were 1.7 times as likely

to be lost (not by merging) as the heavy quarks. This observation can be understood

from the pT distributions: the b-quarks tend to be harder, as seen in Fig. 7.2. This

observation motivated us to make the simplifying assumption that it is a light quark

coming from the hadronically-decaying W that is lost.

Specifically, the following algorithm was used to model losing a jet. The algorithm

involves determining two things for each parton-level configuration (y, j): which light

quark jet is lost and how likely would it be lost. The steps are done in sequence.
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Figure 7.1: The pT and η distribution of quarks that are not matched to a jet
and not merged with another jet for a tt̄→e+jets MC sample before tagging.
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Figure 7.2: The pT distribution of b-quarks (red) and light quarks (blue) for
a tt̄→e+jets sample before tagging.
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1. If the two light quarks are within ∆R < 0.6, it is assumed they would be merged

into a single jet, and the likelihood to lose the jet, w, is set to 1. The rationale

for the value of 0.6 is that the analysis uses jets with a cone of r = 0.5, and

two jets are merged when 50% of the energy of the lower energy jet is in the

overlap area. If one assumes the distribution of energy is uniform within a 0.5

cone around each initiating parton, the point where merging occurs is when

the distance between the two jets is 0.6 [197]. The jet is treated for transfer

function purposes as if it were a single light jet associated with the summed

parton four-vector: pnot lost ≡ pq + pq̄′. This case does not happen very often.

2. Otherwise, randomly choose which light quark to lose. Associate it with the

“lost jet” four-vector plost that is integrated over, and associate the jet that is

not lost with the reconstructed jet four-vector pnot lost.

3. If the lost parton has |η| > 3.4 it is assumed that an associated jet would not

found because of the η cut in the selection. The likelihood to lose the jet, w, is

set to 1.

4. Otherwise, return a weight based on the transfer function as a function of the

ET of the parton that is to be lost:

w(ET,parton) = max

{
∫ 15

0

dET,recoWjet(ET,reco|ET,parton), 0.05

}

. (7.16)

Integrating over the transfer function for reconstructed jet values below the

jet pT threshold models cases where the reconstructed jet pT is below the jet

threshold, and the minimum returned value of 0.05 models other jet identifica-

tion efficiencies.

Continuing on from Eq. 7.12, the approximation that the angular part of the
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transfer functions is a delta function collapses the lepton and b-quark angular in-

tegrations, just as it does for single top and W+jets. It also collapses the angular

integral of the “found” light quark jet. The other light jet four-vector remains, and

is renamed plost. Mapping the resonances in the same method as for single-top, the

final form of the integration becomes:

∫

dy =

∫

w dpzdm
2
ℓνdm

2
ℓνbdm

2
qq̄′dm

2
qq̄′bd|plost|dΩqlost

. (7.17)

The weight for losing the jet is included explicitly in this equation as a reminder,

even though other weights, like the transfer function weight, have been omitted. The

integration is over eight dimensions: there are the same five degrees of freedom as in

other three-jet events plus three degrees for the momentum of the lost jet.

7.6 Assignment Permutations

The (discrete) summation over different configurations incorporated in Eq. 7.5 in-

cludes the summation over the different ways to assign the partons to the jets. A

weight for each permutation is included as the Wperm part of the transfer function.

This analysis uses two pieces of information to determine the weight, namely b-tagging

and muon charge:

Wperm = WbtagWµcharge. (7.18)
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7.6.1 b-Tagging

The b-tagging weight is assumed to factor by jet:

Wbtag =
∏

i

wbtag(tagi |αi, pTi, ηi), (7.19)

where αi is the flavor of jet i and tagi is true or false depending on whether or not

the jet is tagged. Since this analysis uses the neural network b tagger [159] for the

event selection, it is natural to use the tag-rate functions in wbtag. In particular, the

weights assigned to cases with and without a b-tag are:

wbtag(tag = true |α, pT, η) = P taggable(pT, η)εα(pT, η) (7.20)

wbtag(tag = false |α, pT, η) = 1 − P taggable(pT, η)εα(pT, η), (7.21)

where εα is the tag-rate function for the particular flavor and P taggable is the taggability-

rate function, which is explained in Sec 6.8.1. The taggability is really also a function

of the z position of the vertex, using six z bins, though this analysis always uses

the z = 0− bin, that is, just 0, approaching from the negative side since 0 is a bin

boundary. The logic behind that is that the normalization integral does not include

an integration over the vertex position, so assuming z = 0 makes everything consis-

tent. It is possible in future iterations to include the vertex position as an integration

variable.

7.6.2 Muon Charge

For the s-channel and the lepjets matrix elements, there is both a b-quark and a

b̄-quark in the final state. Furthermore the matrix elements are not symmetric with
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Figure 7.3: The definition
of pTrel

.
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Figure 7.4: The probability for b quark jet
to have a µ− or a b̄ quark jet to have a µ+,
given that there is a muon in the jet.

respect to the interchange of the b and b̄ quarks, unlike for the Wbb matrix elements.

Because b-tagging depends on the kinematic variables, it can still help to correctly

assign jets to partons for single-tagged events; however, it would be useful to be

able to distinguish between b-jets and b̄-jets. Two possible ways to do this are by

the jet charge, since b and b̄ quarks have opposite charges, and in the case of muonic

decays of the b quark, by the charge of the decay muon. The former is a possible future

improvement, while the latter was implemented because it is relatively straightforward

to do so, though it suffers from the low muonic branching ratios.

The sought after decays are:

b→ cµ−ν b̄→ c̄µ+ν̄ (7.22)

but there are also the following:

b→ cXX̄ ′ → sµ+ν̄XX̄ ′ b̄→ c̄XX̄ ′ → s̄µ−νXX̄ ′. (7.23)
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The muon charge can still be used, however, because the distribution of pTrel
, the

muon pT relative to the jet axis (see Fig. 7.3), is different in the two cases. Fig. 7.4

shows the probability to have a direct decay, that is, the muon charge to quark type

association in Eq. 7.22, given that the jet has a muon, along with the fit that was

used:

P direct(pTrel
) = −0.182 + tanh (0.68pTrel

+ 0.587) . (7.24)

The probability ranges from around 40% for low pTrel
and goes up to 80% for high

pTrel
.

7.7 Object Transfer Functions

The matrix elements are a function of the parton four-vectors, but what we exper-

imentally have access to are reconstructed objects, not partons. As was shown in

Eq. 7.5, what we need is the “transfer function,” the function relating the recon-

structed configuration given the parton configuration: W (x | y, j), or as we usually

write it, Wj(x, y). As shown in Eq. 7.8, W is the product of the probability associated

with the assignment of jets to partons, Wperm, and the probability to measure the

reconstructed values for the given parton values for a given parton to jet assignment,

Wreco. In this section we are only concerned with Wreco and subsequently omit the

subscript.

An assumption we make is that the transfer function can be factorized into indi-

vidual per-object transfer functions:

W (x, y) =
∏

i

Wi(xi, yi) (7.25)
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where Wi(xi, yi) is a transfer function for one object—a jet, a muon, an electron—

and xi and yi are reconstructed and parton-level information, respectively, for that

object. Technically, the transfer functions can also depend on the vertex though that

still allows them to factor.

7.7.1 Jets

The transfer function for jets [198] is assumed to be a function only of the relative

energy difference between the parton and the jet, and all angles are assumed to be

well measured:

Wjet(xjet, yparton) = W (Ejet − Eparton) × δ(Ωjet − Ωparton) (7.26)

where W (Ejet − Eparton) is parametrized using a double Gaussian:

W (Ejet −Eparton) =
exp

[

− (Ejet−Eparton−p1)2

2p2
2

]

+ p3exp
[

− (Ejet−Eparton−p4)2

2p5
2

]

√
2π(p2 + p3p5)

(7.27)

with pi = αi+βiEparton. The five α and five β parameters are determined by minimiz-

ing a likelihood formed by measuring the parton energy and the matched jet energy

in a tt̄→ℓ+jets MC sample. The parameters used for this analysis were determined in

several pseudorapidity regions of the calorimeter to account for resolution differences

in the detector. The parameters are determined separately for three types of jets:

those that have a b-tag and a muon within the jet, those that have a b-tag but not a

muon, and those that do not have a b-tag.

Figures 7.5 and 7.6 show the derived transfer functions for partons with parton

energies of 15, 25, 50, and 90GeV in the different ηdet bins. These transfer functions
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are the ones derived for and used in the top mass analysis [185], which we also used.

7.7.2 Electrons

The transfer function for electrons is based on the electron response modeling in the

Parametrized MC Simulation (PMCS) package for fast simulation [199, 200]. The

transfer function is assumed to be a function of the reconstructed energy of the

electron, Ereco, the parton energy of the electron, Eparton, and θ, the production angle

with respect to the beam axis:

Welectron(xreco, yparton) = W (Ereco, Eparton, θ) × δ(Ωreco − Ωparton) (7.28)

where W (Ereco, Eparton, θ) is parametrized using the following Gaussian form:

W (Ereco, Eparton, θ) =
1√
2πσ

exp

[

−(Ereco − Ecenter)
2

2σ2

]

(7.29)

with

Ecenter = 1.0002Eparton + 0.324 GeV

σ = 0.028Ecenter ⊕ Sampling(Ecenter, θ)Ecenter ⊕ 0.4 GeV

Sampling(E, θ) =

[

0.164√
E

+
0.122

E

]

exp

[

p1(E)

sinθ
− p1(E)

]

p1(E) = 1.35193− 2.09564

E
− 6.98578

E2
. (7.30)

The symbol, ⊕, means to add in quadrature.
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Figure 7.5: The jet transfer function parametrizations for
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∣ηdet
∣

∣ < 0.5 and
0.5 <

∣

∣ηdet
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∣ < 1.0. (Figures from [198].)
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7.7.3 Muons

The muon transfer functions were derived on pythia tt̄ samples, smeared first to

model the data [201, 202]. The transfer function is assumed to be a function of

∆

(

q

pt

)

=

(

q

pt

)

reco

−
(

q

pt

)

parton

(7.31)

and of ηCFT. Therefore

Wmuon(xreco, yparton) = W

(

∆

(

q

pt

)

, ηCFT

)

× δ(Ωreco − Ωparton) (7.32)

where W (∆ (q/pt) , ηCFT) is parametrized using a single Gaussian:

W

(

∆

(

q

pt

)

, ηCFT

)

=
1√
2πσ

exp











−

[

∆
(

q
pt

)]2

2σ2











(7.33)

σ =







σo : |ηCFT| ≤ ηo

√

σ2
o + [c(|ηCFT| − ηo)]2 : |ηCFT| > ηo

(7.34)

There are three fitted parameters in the above equations: σo, c, and ηo, each of which

is fitted by two sub-parameters:

par = par(0) + par(1) · 1/pt. (7.35)

Furthermore, these parameters are derived for four classes of events: those that were

from before or after the 2004 shutdown, when the magnetic field strength changed,

and in each run range, those that have an SMT hit on the track and those that do

not.
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These transfer functions are the same ones derived and used in the top mass

analysis. This analysis uses only the post-2004 parametrization. Charge misidentifi-

cation is modeled by adding over both the correct and incorrect charge assignment in

Eq. 7.31, though the effect should be small. A study measuring the W → µν charge

asymmetry found the muon charge misidentification to be approximately 2% when

no track quality requirements were made, 0.2% when more than eight CFT hits and

at least one SMT hit was required, and (0.1± 0.1)% for the tight track requirements

that analysis used [203].

7.8 Single Top Discriminant

The form of the discriminant is given in Eq. 7.4 in Section 7.1, and it is repeated

below:

D(x) =
P (x|signal)

P (x|signal) + P (x|background)
(7.36)

where

P (x|processi) =
1

σi

dσi

dx
. (7.37)

We build separate s-channel and t-channel discriminants, Ds and Dt. The signal

probabilities for the various channels are:

P (x | 2jet, schannel) =
1

σtb

dσtb

dx
(7.38)

P (x | 2jet, tchannel) =
1

σtq

dσtq

dx
(7.39)

P (x | 3jet, schannel) =
1

σtbg

dσtbg

dx
(7.40)

P (x | 3jet, tchannel) =
1

(σtqb + σtqg)

d(σtqb + σtqg)

dx
. (7.41)
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Equation 7.41 can also be written as:

P (x | 3jet, tchannel) =
σtqb

(σtqb + σtqg)

1

σtqb

dσtqb

dx
+

σtqg

(σtqb + σtqg)

1

σtqg

dσtqg

dx
(7.42)

= wtqbP (x|tqb) + wtqgP (x|tqg), (7.43)

where wtqb and wtqg are the relative yields of the two signal processes. For single-

tagged events, we use wtqb = 0.6 and wtqg = 0.4, while for double-tagged events, we

use wtqb = 1 and wtqg = 0, based on the yield fractions given in Eq. 7.42 using the

cross sections as calculated by the normalization integral, Eq. 7.9.

We keep the same methodology of using weights based on yield fraction for the

P (x|background) calculations. We do not use a matrix element for every background

that exists, however, so the yield fractions cannot be determined as for the signal

probabilities. Some, such as ud̄ → Wcc̄, are not included because they have similar

characteristics as ones that are included, ud̄→Wbb̄ in this particular case. Therefore,

we use the yields as determined from the official MC samples and consider what

background the matrix elements were meant to discriminate against. Defining fsample

as the yield fraction for each official MC sample, two alternate sets of weights were

evaluated:

wwbb = fWbb + 0.5fWcc

wwcg = 0.5fWcc

wwgg = fWlp + fQCD



7.8. Single Top Discriminant 171

1 tag 2 tags

Weight Electron Muon Electron Muon

wwbb 0.55 0.60 0.83 0.87

2-jet wwcg 0.15 0.15 0.04 0.04

wwgg 0.35 0.30 0.13 0.09

wwbbg 0.35 0.45 0.30 0.40

wwcgg 0.10 0.10 0.02 0.03
3-jet

wwggg 0.30 0.25 0.13 0.10

wlepjets 0.25 0.20 0.55 0.47

Table 7.3: Background weights chosen for each analysis channel in two-jet
and three-jet events.

and because the s̄g →Wc̄g process is in the Wlp alpgen sample:

wwbb = fWbb + fWcc

wwcg = 0.5fWlp

wwgg = 0.5fWlp + fQCD.

In the three-jet bin, the weights were calculated the same way, with the addition

that wlepjets = flepjets. These two alternate sets of weights proved to be close to each

other, and because the discriminating power of the discriminants proved to not be

very sensitive to the weights provided they are reasonable, the two sets of weights

functioned as a guide. The actual values used are summarized in Table 7.3.

The performance of the s-channel and t-channel discriminants can be seen in

Figs. 7.7–7.10. These are plots of the fraction of s-channel (t-channel) signal that

passes versus the fraction of background that passes, varying the cut value c in Ds > c

(Dt > c), for various backgrounds. The color of the lines indicates the background

considered, using the standard colors as specified by the legend in the preface to
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this thesis. The three-jet discriminants include the lepjets matrix element, while

the two-jet discriminants do not. A comparison between the two with regards to tt̄

performance hints at the benefit of explicitly including the tt̄ matrix element.
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Figure 7.7: The discriminant performance for e+jets events with one b-tag.
The upper row is for two-jet events, while the lower for three-jet events. On
the left is the performance of the s-channel discriminant, on the right that
of the t-channel discriminant.
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Figure 7.8: The discriminant performance for µ+jets events with one b-tag.
The upper row is for two-jet events, while the lower for three-jet events. On
the left is the performance of the s-channel discriminant, on the right that
of the t-channel discriminant.
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Figure 7.9: The discriminant performance for e+jets events with two b-tags.
The upper row is for two-jet events, while the lower for three-jet events. On
the left is the performance of the s-channel discriminant, on the right that
of the t-channel discriminant.



7.8. Single Top Discriminant 175

background fraction
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

si
gn

al
 fr

ac
tio

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DØ Run II Preliminary

background fraction
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

si
gn

al
 fr

ac
tio

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DØ Run II Preliminary

background fraction
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

si
gn

al
 fr

ac
tio

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DØ Run II Preliminary

background fraction
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

si
gn

al
 fr

ac
tio

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
DØ Run II Preliminary

Figure 7.10: The discriminant performance for µ+jets events with two b-tags.
The upper row is for two-jet events, while the lower for three-jet events. On
the left is the performance of the s-channel discriminant, on the right that
of the t-channel discriminant.
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7.9 Cross-Check Samples

An important step in the single top search is to establish that the background model

is appropriate while minimizing examining the search region. For this purpose, two

background-dominated control samples are defined, and the 1D discriminants in data

and in the Monte Carlo background model are compared.

The two control samples are defined to consist of events that pass the standard

event selection and in addition HT < 175 GeV or HT > 300 GeV, respectively, where

HT is the scalar sum of the charged lepton pT, the 6ET, and the jet pTs. Because two-jet

events are largely dominated by W+jets background, these cross-checks mainly test

the modeling of that background. For three-jet events, the HT > 300 GeV sample also

contains a significant fraction of tt̄, so it is also a test of how well the tt̄ background

is modeled.

Most of the signal, and thus the W+jets background that is of concern, has HT

between these cuts, as can be seen in Fig. 7.11. Therefore, by confirming that the

observed discriminant distribution is well reproduced by the background model for the

softest and hardest W+jets events, we gain confidence that the W+jets background

in the signal region is also well modeled.

Figures 7.12 and 7.13 compare the s-channel and t-channel discriminants between

data and the background model for events with two and three jets respectively for the

HT < 175 GeV sample. Figures 7.14 and 7.15 compare the s-channel and t-channel

discriminants between data and the background model for events with two and three

jets respectively for the HT > 300 GeV sample. The plots have the electron and

muon channels, as well as the one and two b-tag channels combined for increased

statistics, and the single top quark content is scaled to the measured cross section.

Good agreement is seen for both control samples
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Figure 7.11: The HT distributions for single-top MC events. The upper row
is for two-jet events, while the lower row is for three-jet events. The left
column is for s-channel, and the right for t-channel. Lines are drawn at
HT = 175 GeV and HT = 300 GeV.
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Figure 7.12: HT < 175 GeV cross-check plots in two-jet events for the s-
channel discriminant (upper row) and the t-channel discriminant (lower row).
The left column shows the full discriminant region while the right column
shows the high discriminant region.
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Figure 7.13: HT < 175 GeV cross-check plots in three-jet events for the s-
channel discriminant (upper row) and the t-channel discriminant (lower row).
The left column shows the full discriminant region while the right column
shows the high discriminant region.
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Figure 7.14: HT > 300 GeV cross-check plots in two-jet events for the s-
channel discriminant (upper row) and the t-channel discriminant (lower row).
The left column shows the full discriminant region while the right column
shows the high discriminant region.
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Figure 7.15: HT > 300 GeV cross-check plots in three-jet events for the s-
channel discriminant (upper row) and the t-channel discriminant (lower row).
The left column shows the full discriminant region while the right column
shows the high discriminant region.
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Chapter 8

The Analysis: Extracting a Result

For each event two discriminant values are calculated: the s-channel single-top dis-

criminant and the t-channel single-top discriminant. These are plotted in eight two-

dimensional histograms, one for each channel (electron or muon, one or two b-tagged

jets, two or three jets), and provided as input to top statistics [191], which applies

systematics and extracts a measurement using a Bayesian approach, as explained

in Sec. 8.2. As a compromise between having too few statistics in the bins of the

histograms, which would increase the uncertainty, and too few bins, which would

decrease the discriminating power, 9 × 9 variable-sized binning was chosen. The size

of the bins is such that in one-dimensional projections of the histogram, the amount

of “signal” is uniform in each bin. For binning purposes, in the projection where the

t-channel discriminant is collapsed, leaving only a one-dimensional histogram binned

by the s-channel discriminant value, s-channel is considered signal, and similarly in

the projection where the s-channel discriminant is collapsed, t-channel is considered

the signal. However, we extract a combined s-channel+t-channel cross section assum-

ing the SM cross section ratio of σs/σt = 0.44, so s-channel+t-channel is considered
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signal subsequently.

8.1 Systematic Uncertainties

We treat systematic uncertainties in two ways: as an uncertainty on the normalization

of a sample (a flat uncertainty) and as an uncertainty that change the shapes of the

discriminant distributions (a shape-changing uncertainty). We find that only two

uncertainties noticeably affect the shapes of the discriminant: the uncertainty in the

jet energy scale, and the uncertainty in the TRFs used to parametrize b-tagging.

Everything else we treat as a flat uncertainty.

For the JES uncertainties, the JES is shifted up by one standard deviation, and

the analysis is repeated to produce a discriminant output. Then the JES is shifted

down one standard deviation, and the discriminant is calculated again. In this way,

separate shifts are calculated for each bin of the discriminant distributions. For MC

events, the jet energy resolution uncertainty is not taken into account in the JES

uncertainty, so to account for this, the jet energy smearing is varied by the size of the

jet energy resolution. The TRF uncertainty is treated analogously.

We have considered the following systematic uncertainties in the analysis. The

particular values for the electron channel, two-jets, one b-tag are given in Fig. 8.1,

while the uncertainties for the other channels are in Appendix A.

• Integrated luminosity

The uncertainty on the integrated luminosity is 6.1%. It affects the signal and

tt̄ yields.

• Theoretical cross sections and branching ratios

The uncertainty on the cross section for signal and tt̄ includes the theoretical
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error and the uncertainty from the top quark mass uncertainty. Because W+jets

is normalized to data, there is no cross section uncertainty associated with it.

• Trigger efficiency

The uncertainty in the trigger efficiency is calculated by shifting the trigger

turn-on curves up and down by one standard deviation. This shift in the yield

is taken as an uncertainty in the yield.

• Primary vertex selection efficiency

The primary vertex selection efficiency in data and MC are not the same. We

assign a systematic uncertainty for the difference in the z position of the pri-

mary vertex taking into account the beam profile along the longitudinal direc-

tion [204].

• Jet reconstruction and identification

A 1.5% uncertainty in the reconstruction efficiency for jets is assigned to take

into account differences in the efficiency with regard to the number of jets and

the η distribution of the jets.

• Jet energy scale and jet energy resolution

This is a shape-changing uncertainty on the scale and resolution of jet energy.

• Jet fragmentation

This systematic is modeled by the difference in the jet fragmentation models of

pythia and herwig as well as the uncertainty in the modeling of initial-state

and final-state radiation.

• Electron preselection efficiency

The electron preselection correction factors are parametrized as a function of
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ηdet. The uncertainty in the efficiency accounts for its dependence on variables

other than ηdet, and as a result of limited data statistics in determining the

correction factor. The uncertainty is determined to be 2.2%.

• Electron post-preselection efficiency

The electron post-preselection correction factors are parametrized as a function

of ηdet and φdet. The uncertainty in the efficiency accounts for its dependence

on other variables, such as the number of jets and the instantaneous luminosity,

and as a result of limited data statistics in determining the correction factor.

The uncertainty is determined to be 5%.

• Muon reconstruction and identification efficiency

An uncertainty of 7% is assigned to the muon ID reconstruction efficiency,

mostly due to limited statistics in determining the correction factor, but also

including uncertainties in the tag and probe and background subtraction meth-

ods.

• Muon central track matching uncertainty

The muon tracking uncertainty is assigned to be 1.5%. It includes uncertainties

from the tag and probe and background subtraction method, biases due to

luminosity and timing bias, and averaging over φ, and the limited statistics in

each bin of the scale factor.

• Muon isolation efficiency

The muon isolation efficiency uncertainty was estimated to be 2% to cover the

dependences not taken into account in the muon isolation correction factor.

• Matrix method normalization [182]

The determination of the number of real-lepton events in data is affected by the
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uncertainties associated with the determination of the lepton efficiencies and

fake rates. It is also affected by the limited statistics of the data sample.

• Heavy flavor ratio

The error on the additional scale factor (α) we apply to set the Wbb̄ and Wcc̄

contributions in the W+jets sample is estimated to cover several effects: depen-

dence on the b-quark pT, the difference between the zero tag samples where it is

estimated and the signal samples where it is used, and the intrinsic uncertainty

on the value of the LO cross section.

• MC tag-rate functions

This is a shape-changing uncertainty on the TRFs originating from statistical

errors due to limited MC statistics, the assumed fraction of heavy flavor in the

MC QCD used for the mistag rate determination, and the dependence that

b-tagging has on variables other than the ones the TRFs are parametrized in.

8.2 Extracting a Measurement Using a Bayesian

Approach

We model systematics and extract a result using a Bayesian approach [191]. We

assume the probability to observe a count D if the mean is d, P (D|d), is given by

a Poisson distribution. In each individual bin of the 9 × 9 histograms, the expected

count is d = s +
∑

i bi, where s stands for signal and bi are the various backgrounds.

Furthermore, s = σa, where σ is the cross section we are trying to extract, and a

is the luminosity times the acceptance, which we measure with the single top MC.
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Single-Tagged Two-Jets Electron Channel Percentage Errors

tb tqb tt̄lj tt̄ll Wbb Wcc Wjj Mis-ID e

Components for Normalization

Luminosity ( 6.1) ( 6.1) 6.1 6.1 — — — —

Cross section ( 16.0) ( 15.0) 18.0 18.0 — — — —

Branching fraction ( 1.0) ( 1.0) 1.0 1.0 — — — —

Matrix method — — — — 18.2 18.2 18.2 18.2

Primary vertex 2.4 2.4 2.4 2.4 — — — —

Electron ID 5.5 5.5 5.5 5.5 — — — —

Jet ID 1.5 1.5 1.5 1.5 — — — —

Jet fragmentation 5.0 5.0 7.0 5.0 — — — —

Trigger 3.0 3.0 3.0 3.0 — — — —

Components for Normalization and Shape

Jet energy scale 1.4 0.3 9.9 1.7 — — — —

Flavor-dependent TRFs 2.1 5.9 4.6 2.4 4.4 6.3 7.4 —

Statistics 0.7 0.7 1.3 0.8 0.9 0.9 0.4 5.6

Combined

Acceptance uncertainty 10.8 12.1 — — — — — —

Yield uncertainty 19.3 19.3 24.1 21.1 18.8 19.3 19.7 19.1

Table 8.1: Electron channel uncertainties for one b-tag and two jets.
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Using L(D|d) ∝ P (D|d), we can obtain the posterior probability density,

P (σ|D) =
1

N

∫

L(D|σ, a,b)π(σ, a,b)da db, (8.1)

where b is a vector of all the backgrounds, and π(σ, a,b) is the prior. The measured

cross section is taken to be peak of the posterior.

The prior, π(σ, a,b), is assumed to factor: π(σ, a,b) = π(σ)π(a,b). We use a

flat prior for the cross section:

π(σ) =







1/σmax : 0 < σ < σmax

0 : otherwise
(8.2)

The prior, π(a,b), represents our prior knowledge of those variables. Thus sys-

tematic uncertainties are modeled by integrating over Gaussian priors. For the shape-

changing uncertainties, the prior in each bin has a different positive and negative

width, taken from how big a shift each bin experienced for the one standard devia-

tion positive and negative shift studies. Correlations in the shifts can be taken into

account by using the same random number for all the bins.

8.3 Generating Ensembles

In order to calibrate the method and determine significances, we make use of ensem-

bles, which were generated as follows. Working separately for the electron channel and

muon channel, but merged in number of jets and number of b-tags, we can determine

nominal yields for tt̄, W+jets, multijet background, and the two single-top signals

for the ensemble. Then, to model systematics, for each member of an ensemble, the
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nominal yields are shifted by a random number with a Gaussian distribution with a

width 20% of the nominal yields, since the systematics as calculated more carefully

in top statistics are near that value. The same random number is used for the

W+jets and multijet yields to model their anti-correlation. The number of events in

this member of the ensemble is determined by sampling a poisson distribution with

a mean equal to the sum of the shifted yields.

Separately for the electron channel and muon channel, we have a pool of sig-

nal+background events made up of the MC models and the orthogonal sample used

for modeling the multijet background. The events have a weight associated with them

so that the sum of all the events reproduces the nominal yields. For the backgrounds

these are just the weights that are used in the background model, but the signal

yields are scaled to produce the appropriate cross sections. Because we determined

how many events a given sample in an ensemble has, we choose that many events from

the pool at random, with the probability to select a given event being proportional

to its weight. These events are all given a weight of one and treated as data events.

8.4 Calibration of the Method

Several ensembles of around 2000 simulated data sets were produced from the back-

ground model to test the calibration of the method. The ensembles were generated

with a non-SM σs+t cross section but with the cross section ratio fixed at the SM value

of σs/σt = 0.44. The results are shown in Fig. 8.1. In each case, the extracted cross

section was in good agreement with the input value, although in the lower results,

some shift in the mean can be attributed to not allowing a negative cross section to

be measured.
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Figure 8.1: Results using the ensembles with a non-SM cross section but a
SM σs:σt ratio. The blue lines indicates the input s-channel+t-channel cross
section values, which are 2.0 pb, 2.9 pb, 4.0 pb, and 6.0 pb, respectively.
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Figure 8.2 shows the measured cross section values versus the input cross sections,

with a straight line fit. The fitted function is σmeas = 0.95σin + 0.46 pb. Given the

relatively low precision of our final measurement and the fact that at least part of

the reason for the small positive shift in the average measured values is because the

measured cross section was not allowed to be negative, we do not apply any correction.
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Figure 8.2: Measured signal cross section versus input cross section for the
calibration ensembles.

8.5 Expected Results

This section presents the expected performance of the analysis. For these results the

number of observed events has been set equal to the expected signal, according to the

SM prediction, plus the expected background.

Figures 8.3 and 8.4 show the resulting s+t-channel posterior for the combined e+µ

≥ 1b-tag channel in two-jet and three-jet events. Figure 8.5 shows the s + t-channel

posterior for the combination of all channels. Table 8.2 shows the expected cross
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sections for various combinations of analysis channels. Fig. 8.6 shows the expected

cross sections for the various channels, along with a measure of the significance,

σs+t/∆σs+t, where ∆σs+t is the half-width of the posterior. In all cases the expected

result for each combination is consistent with the standard model cross section of

2.9 pb. We can see that the greatest sensitivity comes from the electron channel

with two jets, one b-tagged, with the similar configuration in the muon channel being

next. Nevertheless, the 3-jet channels and the two-tagged channels do contribute to

the sensitivity. Systematic uncertainties make the sensitivity lower, but this analysis

is dominated by low statistics.
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Figure 8.3: Expected 1D posterior plots for the combined e+µ ≥ 1 b-tag
channel in two-jet events, with statistical uncertainties only (left plot) and
with statistical and systematic uncertainties (right plot).

Another measure of the significance of our measurement is the p-value, which is

the probability that the background alone could fluctuate up to or above the measured

cross section. Figure 8.7 shows the distribution of measured cross sections for an en-

semble made up of simulated zero-signal data sets. The data sets had both statistical

and systematic variations applied when they were created. From this distribution, we

calculate a p-value of 3.1% assuming there is SM single-top with σ = 2.9 pb, meaning
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Figure 8.4: Expected 1D posterior plots for the combined e+µ ≥ 1 b-tag
channel in three-jet events, with statistical uncertainties only (left plot) and
with statistical and systematic uncertainties (right plot).
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Figure 8.5: Expected 1D posterior plots for all channels combined, with
statistical uncertainties only (left plot) and with statistical and systematic
uncertainties (right plot).
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Figure 8.6: Summary plot of the expected single top quark cross sections
showing the individual measurements and their combination. The number in
parenthesis is a measure of the significance of the measurement, σs+t/∆σs+t.
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1,2tags + 2,3jets e,µ + 2,3jets e,µ + 1,2tags All
e-chan µ-chan 1 tag 2 tags 2 jets 3 jets channels

Statistics only 2.9+1.5
−1.4 2.9+1.7

−1.6 2.9+1.3
−1.2 2.9+2.4

−2.1 2.9+1.4
−1.3 2.9+2.0

−1.8 2.9+1.2
−1.1

With systematics 2.7+2.0
−1.7 2.9+2.3

−2.0 2.8+1.7
−1.5 2.7+3.3

−2.6 2.8+1.8
−1.6 2.9+2.7

−2.3 2.8+1.6
−1.4

Table 8.2: Expected s+t-channel cross sections, without and with systematic
uncertainties, for many combinations of the analysis channels. The final
expected result of this analysis is shown in the lower right hand corner in
bold type.

that only 3.1% of the time zero signal could cause the ME method to measure 2.9 pb

or higher. This p-value corresponds to a 1.9σ Gaussian-equivalent significance.
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Figure 8.7: Distribution of cross sections from a zero-signal ensemble, with
full systematics included, and the expected p-value using σ = 2.9 pb.
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8.6 Observed Results

8.6.1 Discriminant Output

Figures 8.8 and 8.9 shows the s-channel and t-channel discriminant histograms for

two-jet and three-jet events respectively including data. The different lepton and

number of b-tags channels are combined. The single top quark content is scaled to

the measured cross section. It is evident that there is better agreement between data

and background+signal versus background-only.

Note that this combination does not take into account the binning or the sig-

nificance of the measurement of the individual channels, so it is provided only as a

check. The individual channel 1D projections of the discriminants that are provided

as input to top statistics are shown in Appendix C.

8.6.2 Measured Cross Section

Figure 8.10 shows the observed s + t-channel posterior without and with system-

atic uncertainties for all channels combined. The measured cross section with full

systematics is

σ (pp̄ → tb+X, tqb+X) = 4.8+1.6
−1.4 pb.

This result assumes a SM cross section ratio of σs/σt = 0.44. Both Table 8.3 and

Figure 8.11 shows the measured cross sections from various combinations of analysis

channels. The results are consistent with each other, though somewhat above the SM

prediction.
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Figure 8.8: Discriminant results for the e+µ channel with two jets and ≥ 1
b tag. Upper row: s-channel discriminant; lower row: t-channel discriminant.
Left column: full output range; right column: close-up of the high end of the
distributions.

1,2tags + 2,3jets e,µ + 2,3jets e,µ + 1,2tags All
e-chan µ-chan 1 tag 2 tags 2 jets 3 jets channels

Statistics only 3.6+1.5
−1.4 3.7+1.7

−1.6 2.9+1.2
−1.1 7.1+3.1

−2.7 4.0+1.4
−1.3 3.0+1.9

−1.7 3.7+1.1
−1.1

With systematics 4.3+2.0
−1.7 5.9+2.6

−2.2 4.6+1.8
−1.5 7.5+4.3

−3.5 5.1+2.0
−1.7 4.4+2.7

−2.2 4.8+1.6
−1.4

Table 8.3: Measured s+t-channel cross sections, without and with systematic
uncertainties, for many combinations of the analysis channels. The final
result of this analysis is shown in the lower right hand corner in bold type.
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Figure 8.9: Discriminant results for the e+µ channel with three jets and ≥ 1
b tag. Upper row: s-channel discriminant; lower row: t-channel discriminant.
Left column: full output range; right column: close-up of the high end of the
distributions.
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Figure 8.10: Measured 1D posterior plots for all channels combined, with
statistical uncertainties only (left plot) and with statistical and systematic
uncertainties (right plot).

8.6.3 Signal Significance

Figure 8.12 shows the previously seen distribution of measured cross sections for an

ensemble made up of simulated zero-signal data sets. Using the measured cross section

of 4.8 pb, from this distribution, we calculate a p-value of 0.08%, meaning that only

0.08% of the time zero signal could cause the ME method to measure σ ≥ 4.8 pb. That

p-value corresponds to a Gaussian-equivalent significance of 3.2 standard deviations.

Figure 8.13 shows the distribution of measured cross sections for an ensemble

made up of simulated SM signal (σ = 2.9 pb) data sets. From this distribution, we

calculate a p-value of 13%, meaning that 13% of the time a Standard Model signal

could cause the ME method to measure σ ≥ 4.8 pb, corresponding to 1.1σ.

8.7 Event Characteristics

As a check that the ME discriminant selects events which resemble the characteristics

expected for single-top events, we plot the distributions of variables after applying a
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Figure 8.11: Summary plot of the measured single top quark cross sec-
tions showing the individual measurements and their combination. The
number in parenthesis is a measure of the significance of the measure-
ment, σs+t/∆σs+t.
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Figure 8.12: Distribution of cross sections from a zero-signal ensemble, with
full systematics included, and the observed zero-signal p-value.
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Figure 8.13: Distribution of cross sections from a SM ensemble, with full
systemetics included, and the observed SM p-value.
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cut on the discriminant value. One variable that has a distinct shape for t-channel

single-top events is “Q × η,” or to be more specific, the charge of the lepton times

the pseudorapidity of the untagged jet. It is also expected that the invariant mass of

the lepton, 6ET, and b-tagged jet be consistent with the top quark mass. Figure 8.14

shows these two variables for different t-channel discriminant cuts. The top row is for

all events, the middle is signal-suppressed, and the bottom row is signal-enhanced.

The Q × η variable in the single-enhanced row resembles the theoretical prediction,

as given in Fig. 3.9(b), suggesting that the discriminant performs as expected. Note

that background that mimics this behavior is also enhanced. The invariant mass is

consistent with a top quark.

Fig. 8.15 shows the same variables for different s-channel discriminant cuts. As

expected, the “Q× η” variable does not have a distinct shape for s-channel, but the

invariant mass is again consistent with the top quark mass. In all plots, the single

top quark content is scaled to the measured cross section.
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Figure 8.14: The lepton charge times the pseudorapidity of the untagged jet,
Q × η, (left column) and the invariant mass of the lepton, 6ET, and tagged
jet (right column) for (a) all events, (b) only events that pass a Dt < 0.4 t-
channel discriminant cut, and (c) only events that pass a Dt > 0.7 t-channel
discriminant cut.
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Figure 8.15: The lepton charge times the pseudorapidity of the untagged jet,
Q × η, (left column) and the invariant mass of the lepton, 6ET, and tagged
jet (right column) for (a) all events, (b) only events that pass a Ds < 0.4 s-
channel discriminant cut, and (c) only events that pass a Ds > 0.7 s-channel
discriminant cut.
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Chapter 9

Summary and Conclusions

We have used the matrix elements method to discriminate single top quark processes

from background processes in nearly 1 fb−1 of Run II data. It is a second, optimized

iteration, the main difference being the addition of a tt̄ discriminant for events with

three jets. Assuming a SM cross section ratio of σs/σt = 0.44, we measure:

σ (pp̄ → tb+X, tqb+X) = 4.8+1.6
−1.4 pb.

This result has a p-value of 0.08%, corresponding to a 3.2 standard deviation Gaussian-

equivalent significance, an improvement over the p-value of 0.22% (2.9σ) that was

measured in the first iteration.
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Analysis Technique Measured σs+t (pb) Observed p-value

BNN 5.0 ± 1.9 0.89% (2.4σ)

ME 4.6+1.8
−1.5 0.21% (2.9σ)

DT 4.9 ± 1.4 0.04% (3.4σ)

Table 9.1: The single top results published in Ref. [91].

Analysis Technique Measured σs+t (pb) Observed p-value

BNN 4.4+1.6
−1.4 0.08% (3.1σ)

ME 4.8+1.6
−1.4 0.08% (3.2σ)

Table 9.2: The improved single top results.

9.1 The Current D0 Single Top Results

9.1.1 Cross Section Measurements

There were three primary techniques employed in the original published result [91]:

Bayesian neural networks, matrix elements, and decision trees. The results that were

obtained are summarized in in Table 9.1. The analysis using the BNN technique has

since been improved, and this thesis has presented the analysis using an improved

ME technique. The new results are given in Table 9.2.

The DT result and the improved versions of the BNN and ME results have been

combined using the Best Linear Unbiased Estimate (BLUE) method [205], as follows.

The combined cross section is calculated with the linear estimate as:

σcomb =
∑

j

wjσj (9.1)

where σj are the cross sections as calculated by the individual analyses, and wj is a
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weight, determined by:

wi =

∑

j Cov−1(σi, σj)
∑

k

∑

l Cov−1(σk, σl)
. (9.2)

The covariances were calculated by running over the SM ensembles, and the following

weights were calculated: wDT = 0.127, wBNN = 0.386, and wME = 0.488. The

correlation matrix was found to be

ρ =





















D
T

M
E

BN
N

1 0.64 0.66 DT

0.64 1 0.59 ME

0.66 0.59 1 BNN





















. (9.3)

These analyses are highly correlated. Finally, the uncertainty to the combined result

is taken to be:

∆σcomb =

√

∑

i

∑

j
wiwjρij∆σi∆σj . (9.4)

Assuming a SM cross section ratio of σs/σt = 0.44, the combined result for the single

top cross section is

σ (pp̄ → tb+X, tqb+X) = 4.7 ± 1.3 pb.

These results are summarized in Fig. 9.1.

Figure 9.2 shows the measured cross sections for the ME, BNN, and DT analyses

for an ensemble made up of simulated zero-signal data sets, along with the measure-

ment using the combination. Using the combined measured cross section of 4.7 pb,

from this distribution, we calculate a p-value of 0.014%, meaning that only 0.014%

of the time zero signal could cause the combination to measure σ ≥ 4.7 pb. That
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Figure 9.1: The single top cross section measurement of the individual anal-
yses and their combination [205].
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p-value corresponds to a Gaussian-equivalent significance of 3.6 standard deviations.
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Figure 9.2: Distribution of cross sections from a zero-signal ensemble, with
full systematics included, and the observed zero-signal p-value for the com-
bined cross section [205].

9.1.2 The First Direct Measurement of |Vtb|

One of the primary reasons to study single top production is to measure |Vtb|. This was

done for the DT analysis and was included in published result [91], and the method

is explained with more detail in Ref. [206]. This result makes no assumptions on the

unitarity of CKM or the number of families, but it does require a few assumptions.

The first assumption is that the observed single top results were produced by an

interaction with a W boson, not from one of the various BSM scenarios that include

extra scalar and vector bosons or FCNC interactions. The second assumption is that
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Uncertainty Component s-channel t-channel

Top quark mass 8.5 13.0

Factorization scale 4.0 5.5

PDF 4.5 10.0

αs 1.4 0.01

Table 9.3: Systematic uncertainties in percent on the cross section factor
required to extract |Vtb|.

|Vtb|2 ≫ |Vtd|2 + |Vts|2, which is experimentally supported by the B(t → Wb)/B(t →
Wq) measurements done on tt̄ events [58, 57]. Lastly, it is assumed that the Wtb

vertex is CP-conserving and of the V−A form, though possibly of anomalous strength:

Γµ
Wtb = − g√

2
Vtbū(pb)γ

µfL
1 PLu(pt). (9.5)

Additional theoretical uncertainties needed to be added to the measurement of |Vtb| [77],

and they are given in Table 9.3.

Two measurements were performed, one for |Vtbf
L
1 |, with no requirement that

it be less than one, and one assuming fL
1 = 1, resulting in |Vtb| being restricted to

between zero and one. The limits were calculated using a Baysian approach, and the

resulting posteriors for |Vtbf
L
1 |2 and |Vtb|2 are given in Fig. 9.3. The final results for

the two sets of assumptions are:

• |Vtbf
L
1 |2 = 1.72+0.64

−0.54, corresponding to |Vtbf
L
1 | = 1.31+0.25

−0.21

• |Vtb|2 = 1.0+0.0
−0.24, corresponding to |Vtb| > 0.68 at 95% C.L.
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Figure 9.3: Posterior probability density for |Vtbf
L
1 |2 (left)and for |Vtb|2

(right).

9.2 Outlook

Figure 9.4 shows the projected significance of the s-channel and t-channel signals as

a function of the integrated luminosity at D0, assuming a SM cross section. The

current measurements are somewhat higher than the SM, so it will be interesting to

see if that feature stays. At the end of Run II at the Tevatron Collider, single top

production will have been discovered both s+ t-channel combined, and t-channel by

itself. It is not known if s-channel by itself will have a significance over five standard

deviations, but it should have at least three sigma evidence.

The LHC presents a transition from having a search for single top to having pre-

cision measurements with single top [56]. Though s-channel production will remain

difficult, the order of magnitude increase in the t-channel and tW associated produc-

tion channels will allow for clean single top samples. There can be an emphasis on

trying to extract cleaner samples. Also, the analyses could become more cuts-based,

which has the benefit of distorting the background less, allowing for lower system-

atics. As Fig. 8.14 shows, multivariate techniques tend to shape the background to
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Figure 9.4: The single top measurement projections from D0.

look like the signal.

After 30 fb−1 of integrated luminosity, the statistical uncertainty on |Vtb|2 will

be less that 2% [207], though it will be a challenge to reduce other uncertainties to

that level. If all other uncertainties are kept at 5% or less, the uncertainty to |Vtb|2

should be 10% or less. Therefore, the goal is to measure Vtb with an accuracy of

5% or less. A measurement of the polarization of single top quarks produced via the

t-channel process should have a statistical accuracy of 1.6% with 10 fb−1 of integrated

luminosity.

Single top physics at the LHC will present plenty of opportunities to probe the

EW interactions of the top quark. From the initial searches that set limits to single

top production, to the current evidence for single top, to the discovery of single

top production in the later phases of Run II at the Tevatron Collider, to precision

physics at the LHC, one could argue that the physics is getting richer and richer, and

potentially more exciting. There are many reasons to believe that BSM effects might
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become first visible in electroweak interactions of the top quark, so the precision tests

of such interactions have the potential of great rewards.
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Appendix A

Systematic Uncertainties

Single-Tagged Three-Jets Electron Channel Percentage Errors

tb tqb tt̄lj tt̄ll Wbb Wcc Wjj Mis-ID e

Components for Normalization

Luminosity ( 6.1) ( 6.1) 6.1 6.1 — — — —

Cross section ( 16.0) ( 15.0) 18.0 18.0 — — — —

Branching fraction ( 1.0) ( 1.0) 1.0 1.0 — — — —

Matrix method — — — — 16.8 16.8 16.8 16.8

Primary vertex 2.4 2.4 2.4 2.4 — — — —

Electron ID 5.5 5.5 5.5 5.5 — — — —

Jet ID 1.5 1.5 1.5 1.5 — — — —

Jet fragmentation 5.0 5.0 7.0 5.0 — — — —

Trigger 3.0 3.0 3.0 3.0 — — — —

Components for Normalization and Shape

Jet energy scale 5.3 5.8 4.1 3.2 — — — —

Flavor-dependent TRFs 2.1 4.5 2.9 2.1 4.4 6.2 7.6 —

Statistics 1.0 1.0 0.5 0.5 1.0 1.0 0.5 6.7

Combined

Acceptance uncertainty 12.0 12.9 — — — — — —

Yield uncertainty 20.0 19.8 22.0 21.2 17.4 18.0 18.5 18.1

Table A.1: Electron channel uncertainties for one b-tag and three jets.
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Single-Tagged Two-Jets Muon Channel Percentage Errors

tb tqb tt̄lj tt̄ll Wbb Wcc Wjj Mis-ID e

Components for Normalization

Luminosity ( 6.1) ( 6.1) 6.1 6.1 — — — —

Cross section ( 16.0) ( 15.0) 18.0 18.0 — — — —

Branching fraction ( 1.0) ( 1.0) 1.0 1.0 — — — —

Matrix method — — — — 20.7 20.7 20.7 20.7

Primary vertex 3.0 3.0 3.0 3.0 — — — —

Muon ID 7.4 7.4 7.4 7.4 — — — —

Jet ID 1.5 1.5 1.5 1.5 — — — —

Jet fragmentation 5.0 5.0 7.0 5.0 — — — —

Trigger 6.0 6.0 6.0 6.0 — — — —

Components for Normalization and Shape

Jet energy scale 5.3 6.1 20.1 6.8 — — — —

Flavor-dependent TRFs 1.8 5.9 4.5 2.0 4.4 6.3 7.5 —

Statistics 9.0 0.7 1.0 1.0 0.8 0.8 0.4 14.0

Combined

Acceptance uncertainty 16.7 15.4 — — — — — —

Yield uncertainty 23.1 21.5 30.7 23.2 21.2 21.7 22.0 25.0

Table A.2: Muon channel uncertainties for one b-tag and two jets.
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Single-Tagged Three-Jets Muon Channel Percentage Errors

tb tqb tt̄lj tt̄ll Wbb Wcc Wjj Mis-ID e

Components for Normalization

Luminosity ( 6.1) ( 6.1) 6.1 6.1 — — — —

Cross section ( 16.0) ( 15.0) 18.0 18.0 — — — —

Branching fraction ( 1.0) ( 1.0) 1.0 1.0 — — — —

Matrix method — — — — 20.8 20.8 20.8 20.8

Primary vertex 3.0 3.0 3.0 3.0 — — — —

Muon ID 7.4 7.4 7.4 7.4 — — — —

Jet ID 1.5 1.5 1.5 1.5 — — — —

Jet fragmentation 5.0 5.0 7.0 5.0 — — — —

Trigger 6.0 6.0 6.0 6.0 — — — —

Components for Normalization and Shape

Jet energy scale 9.3 9.0 10.8 7.6 — — — —

Flavor-dependent TRFs 1.8 4.4 2.6 1.9 4.3 6.2 7.6 —

Statistics 2.0 2.0 0.8 0.7 1.0 1.0 0.7 14.3

Combined

Acceptance uncertainty 16.1 16.5 — — — — — —

Yield uncertainty 22.7 22.3 25.2 23.5 21.2 21.7 22.1 25.2

Table A.3: Muon channel uncertainties for one b-tag and three jets.
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Double-Tagged Two-Jets Electron Channel Percentage Errors

tb tqb tt̄lj tt̄ll Wbb Wcc Wjj Mis-ID e

Components for Normalization

Luminosity ( 6.1) ( 6.1) 6.1 6.1 — — — —

Cross section ( 16.0) ( 15.0) 18.0 18.0 — — — —

Branching fraction ( 1.0) ( 1.0) 1.0 1.0 — — — —

Matrix method — — — — 26.5 26.5 26.5 26.5

Primary vertex 2.4 2.4 2.4 2.4 — — — —

Electron ID 5.5 5.5 5.5 5.5 — — — —

Jet ID 1.5 1.5 1.5 1.5 — — — —

Jet fragmentation 5.0 5.0 7.0 5.0 — — — —

Trigger 3.0 3.0 3.0 3.0 — — — —

Components for Normalization and Shape

Jet energy scale 0.8 4.1 8.0 1.8 — — — —

Flavor-dependent TRFs 12.9 12.9 13.5 13.0 12.2 13.6 16.1 —

Statistics 0.7 0.7 1.3 0.8 0.9 0.9 0.4 28.9

Combined

Acceptance uncertainty 16.7 17.2 — — — — — —

Yield uncertainty 23.1 22.8 26.6 24.6 29.1 29.8 31.0 39.2

Table A.4: Electron channel uncertainties for two b-tags and two jets.
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Double-Tagged Three-Jets Electron Channel Percentage Errors

tb tqb tt̄lj tt̄ll Wbb Wcc Wjj Mis-ID e

Components for Normalization

Luminosity ( 6.1) ( 6.1) 6.1 6.1 — — — —

Cross section ( 16.0) ( 15.0) 18.0 18.0 — — — —

Branching fraction ( 1.0) ( 1.0) 1.0 1.0 — — — —

Matrix method — — — — 22.1 22.1 22.1 22.1

Primary vertex 2.4 2.4 2.4 2.4 — — — —

Electron ID 5.5 5.5 5.5 5.5 — — — —

Jet ID 1.5 1.5 1.5 1.5 — — — —

Jet fragmentation 5.0 5.0 7.0 5.0 — — — —

Trigger 3.0 3.0 3.0 3.0 — — — —

Components for Normalization and Shape

Jet energy scale 4.8 4.0 3.5 2.9 — — — —

Flavor-dependent TRFs 12.7 12.4 12.6 12.8 12.0 13.3 16.4 —

Statistics 1.0 1.0 0.7 0.7 1.0 1.0 0.5 25.8

Combined

Acceptance uncertainty 17.2 16.8 — — — — — —

Yield uncertainty 23.5 22.5 25.1 24.6 25.2 25.8 27.5 34.0

Table A.5: Electron channel uncertainties for two b-tags and three jets.
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Double-Tagged Two-Jets Muon Channel Percentage Errors

tb tqb tt̄lj tt̄ll Wbb Wcc Wjj Mis-ID e

Components for Normalization

Luminosity ( 6.1) ( 6.1) 6.1 6.1 — — — —

Cross section ( 16.0) ( 15.0) 18.0 18.0 — — — —

Branching fraction ( 1.0) ( 1.0) 1.0 1.0 — — — —

Matrix method — — — — 27.6 27.6 27.6 27.6

Primary vertex 3.0 3.0 3.0 3.0 — — — —

Muon ID 7.4 7.4 7.4 7.4 — — — —

Jet ID 1.5 1.5 1.5 1.5 — — — —

Jet fragmentation 5.0 5.0 7.0 5.0 — — — —

Trigger 6.0 6.0 6.0 6.0 — — — —

Components for Normalization and Shape

Jet energy scale 5.2 9.1 19.7 6.9 — — — —

Flavor-dependent TRFs 12.9 12.8 13.4 12.9 12.2 13.5 16.1 —

Statistics 1.3 0.9 0.7 0.7 1.0 1.0 0.5 57.7

Combined

Acceptance uncertainty 19.0 20.3 — — — — — —

Yield uncertainty 24.8 25.2 32.9 26.5 30.2 30.7 31.9 64.0

Table A.6: Muon channel uncertainties for two b-tags and two jets.
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Double-Tagged Three-Jets Muon Channel Percentage Errors

tb tqb tt̄lj tt̄ll Wbb Wcc Wjj Mis-ID e

Components for Normalization

Luminosity ( 6.1) ( 6.1) 6.1 6.1 — — — —

Cross section ( 16.0) ( 15.0) 18.0 18.0 — — — —

Branching fraction ( 1.0) ( 1.0) 1.0 1.0 — — — —

Matrix method — — — — 25.0 25.0 25.0 25.0

Primary vertex 3.0 3.0 3.0 3.0 — — — —

Muon ID 7.4 7.4 7.4 7.4 — — — —

Jet ID 1.5 1.5 1.5 1.5 — — — —

Jet fragmentation 5.0 5.0 7.0 5.0 — — — —

Trigger 6.0 6.0 6.0 6.0 — — — —

Components for Normalization and Shape

Jet energy scale 10.2 7.6 10.1 7.8 — — — —

Flavor-dependent TRFs 12.6 12.3 12.4 12.7 12.0 13.1 16.4 —

Statistics 2.0 2.0 0.8 0.6 1.0 1.0 0.6 50.0

Combined

Acceptance uncertainty 20.8 19.4 — — — — — —

Yield uncertainty 26.3 24.5 27.7 26.7 27.7 28.2 29.9 55.9

Table A.7: Muon channel uncertainties for two b-tags and three jets.
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Appendix B

Plots After Selection
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Figure B.1: The transverse momentum of the leading jet in the electron
channel for events with two jets (left column) and three jets (left column),
before tagging (first row), one b-tag (second row), and two b-tags (third row).
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Figure B.2: The transverse momentum of the leading jet in the muon channel
for events with two jets (left column) and three jets (left column), before
tagging (first row), one b-tag (second row), and two b-tags (third row).
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Figure B.3: The transverse momentum of the second jet in the electron
channel for events with two jets (left column) and three jets (left column),
before tagging (first row), one b-tag (second row), and two b-tags (third row).
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Figure B.4: The transverse momentum of the second jet in the muon channel
for events with two jets (left column) and three jets (left column), before
tagging (first row), one b-tag (second row), and two b-tags (third row).
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Figure B.5: The transverse momentum of the electron for events with two
jets (left column) and three jets (left column), before tagging (first row), one
b-tag (second row), and two b-tags (third row).
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Figure B.6: The transverse momentum of the muon for events with two jets
(left column) and three jets (left column), before tagging (first row), one
b-tag (second row), and two b-tags (third row).
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Figure B.7: The 6ET in the electron channel for events with two jets (left
column) and three jets (left column), before tagging (first row), one b-tag
(second row), and two b-tags (third row).
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Figure B.8: The 6ET in the muon channel for events with two jets (left column)
and three jets (left column), before tagging (first row), one b-tag (second row),
and two b-tags (third row).
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Figure B.9: The opening angle ∆R(jet1, jet2) in the electron channel for
events with two jets (left column) and three jets (left column), before tagging
(first row), one b-tag (second row), and two b-tags (third row).
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Figure B.10: The opening angle ∆R(jet1, jet2) in the muon channel for events
with two jets (left column) and three jets (left column), before tagging (first
row), one b-tag (second row), and two b-tags (third row).
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Figure B.11: The W transverse mass in the electron channel for events with
two jets (left column) and three jets (left column), before tagging (first row),
one b-tag (second row), and two b-tags (third row).
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Figure B.12: The W transverse mass in the muon channel for events with
two jets (left column) and three jets (left column), before tagging (first row),
one b-tag (second row), and two b-tags (third row).
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Appendix C

Discriminant Output Plots
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MATRIX ELEMENT OUTPUTS FOR THE ELECTRON CHANNEL
WITH TWO JETS
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Figure C.1: 1D discriminant projections for the electron channel with one
b tag. Upper row: s-channel discriminant, lower row: t-channel discrimi-
nant. Left column, full discriminant range; right column, the high end of the
distribution.
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MATRIX ELEMENT OUTPUTS FOR THE ELECTRON CHANNEL
WITH TWO JETS
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Figure C.2: 1D discriminant projections for the electron channel with two
b tags. Upper row: s-channel discriminant, lower row: t-channel discrimi-
nant. Left column, full discriminant range; right column, the high end of the
distribution.
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MATRIX ELEMENT OUTPUTS FOR THE MUON CHANNEL WITH
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Figure C.3: 1D discriminant projections for the muon channel with one b tag.
Upper row: s-channel discriminant, lower row: t-channel discriminant. Left
column, full discriminant range; right column, the high end of the distribu-
tion.
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MATRIX ELEMENT OUTPUTS FOR THE MUON CHANNEL WITH
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Figure C.4: 1D discriminant projections for the muon channel with two
b tags. Upper row: s-channel discriminant, lower row: t-channel discrim-
inant. Left column, full discriminant range; right column, the high end of
the distribution.
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MATRIX ELEMENT OUTPUTS FOR THE ELECTRON CHANNEL
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Figure C.5: 1D discriminant projections for the electron channel with one
b tag. Upper row: s-channel discriminant, lower row: t-channel discrimi-
nant. Left column, full discriminant range; right column, the high end of the
distribution.
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MATRIX ELEMENT OUTPUTS FOR THE ELECTRON CHANNEL
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Figure C.6: 1D Discriminant projection for the electron channel with two
b tags. Upper row: s-channel discriminant, lower row: t-channel discrimi-
nant. Left column, full discriminant range; right column, the high end of the
distribution.
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Figure C.7: 1D Discriminant projection for the muon channel with one b tag.
Upper row: s-channel discriminant, lower row: t-channel discriminant. Left
column, full discriminant range; right column, the high end of the distribu-
tion.
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Figure C.8: 1D Discriminant projection for the muon channel with two b tags.
Upper row: s-channel discriminant, lower row: t-channel discriminant. Left
column, full discriminant range; right column, the high end of the distribu-
tion.


